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1. Introduction and Setup
We are working under the Potential Outcomes framework. That means we have the following setup:

(𝑋𝑖, 𝑇𝑖, 𝑌 obs
𝑖 , 𝑌 (1)

𝑖 , 𝑌 (0)
𝑖 )

𝑛

𝑖=1
∼ 𝒫, (1)

where 𝑋𝑖 are the covaraites/variables/features we are considering, 𝑇𝑖 ∈ {0, 1} is whether the 𝑖-th
individual has been exposed to the treatment, 𝑌 obs

𝑖  is the observed outcome for that individual, and
𝑌 (1), 𝑌 (0) are the potential outcomes. We will also operate under the assumptions of SUTVA and
(strong) ignorability:

Assumption 1 (Consistency) . It holds that

𝑌 𝑜𝑏𝑠 = {
𝑌 (1) 𝑖𝑓 𝑇 = 1
𝑌 (0) 𝑖𝑓 𝑇 = 0

.

Assumption 2 (No interference) . There is no interference among our samples, i.e., they are i.i.d.. Under
this assumptions, we can refer to random variables 𝑋, 𝑇 , 𝑌 𝑜𝑏𝑠, 𝑌 (1), 𝑌 (0), of which the indexed versions
presented in Equation 1 are realizations thereof – something we will make great use of throughout this
document.

Assumption 3 (SUTVA) . Assumption 1 (consistency) and Assumption 2 (no interference) both hold.

Assumption 4 (Strong Ignorability) . It holds that (𝑌 (1), 𝑌 (0)) ⟂⟂ 𝑇 | 𝑋.

It’s worth noting that a number of the results we discuss here also hold only under weak ignorability:

Assumption 5 (Weak Ignorability). For all 𝑎 ∈ {0, 1}, it holds that 𝑌 (𝑎) ⟂⟂ 𝑇 | 𝑋.

Nevertheless, for presentation purposes we will stick to strong ignorability (which is also the more
usual assumption in practice). It should be reasonably evident when weak ignorability suffices.

Finally, later on in this document we will introduce an additional positivity assumption:

Assumption 6 (Positivity) . For every possible 𝑥 and for all treatments 𝑎,

0 < ℙ[𝑇 = 𝑎 | 𝑋 = 𝑥] < 1. (𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑐𝑡 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠!)

Intuitively, this asserts that no possible set of covariates force make it so that one particular treatment
is assigned almost surely.

1.1. Equivalence between ignorability and covariate shift

1.1.1. Distribution shifts
Distribution shifts are a “classical” topic in the Machine Learning literature. The usual motivation is
that there is typically a mismatch between the distribution of the training data (i.e., the distribution of
the data for which you were able to acquire target labels for) and the distribution of the data that you
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will actually receive when deploying your model. Moreover, this “real-world” distribution may (and
often does) change over time, adding another layer of complexity.

Now, unfortunately, simple stating that the test distribution(s) differs from the training one with no
further information is not enough to argue about how well your model (or your inference) will perform
once there is this shift in distribution (from the training distribution to the test distribution). To amend
this, we consider some few particular cases of distribution shifts, which are tractable.

Let the training and test distributions be 𝑃 train
𝑋,𝑌  and 𝑃 test

𝑋,𝑌 , respectively (both distributions over ran-
dom variables 𝑋 [covariates/variables/features] and 𝑌  [outcomes/labels/targets]). It is worth noting
that regardless of any additional assumptions, we can factor them as products/compositions of a con-
ditional distribution with a marginal one:

𝑃 train
𝑋,𝑌 = 𝑃 train

𝑌 |𝑋 ⋅ 𝑃 train
𝑋

= 𝑃 train
𝑋|𝑌 ⋅ 𝑃 train

𝑌

𝑃 test
𝑋,𝑌 = 𝑃 test

𝑌 |𝑋 ⋅ 𝑃 test
𝑋

= 𝑃 test
𝑋|𝑌 ⋅ 𝑃 test

𝑌

With this factorization in mind we can present the more usual forms of distribution shift. They are:

1. Covariate Shift: 𝑃 train
𝑌 |𝑋 = 𝑃 test

𝑌 |𝑋 (the marginals over 𝑋 may vary arbitrarily). For the purposes of
this document, this is the most important.

Intuitively, this assumption says that the relation between the inputs 𝑋 and the outputs 𝑌  has
not changed. There are many situations where you can assume this to be the case. A nice example
is if you are making a model that receives as inputs 𝑋 sattelite images of the Amazon rainforest
and produces segmentations of forestation in these images 𝑌 . The relation between the inputs and
outputs is expected to remain constant – our view of what is or not a forest in an image shouldn’t
change¹.

2. Concept Shift: 𝑃 train
𝑋 = 𝑃 test

𝑋 .

3. Label Shift: 𝑃 train
𝑋|𝑌 = 𝑃 test

𝑋|𝑌  (the marginals over 𝑌  may vary arbitrarily).

This differs the most from the Covariate Shift assumption because the space of labels (𝒴) is often-
times much simpler than the space of covariates (𝒳). In particular, it is often discrete (e.g., in clas-
sification problems)! This allows for alternate arguments that are generally not applicable to the
Covariate Shift, and moreover allows for much more tractable analyses than what can be done un-
der general Concept Shift, while still being quite applicable.

¹Unless there are particularly tricky images for which there is some improved technical understanding that changes
the judgements we make. But if that happens then a domain expert or the team implementing the system is bound to
know, and it may be easier to just retrain the model.

Once we assume one of these forms of distribution shift, we can now do inference and analyses over
the test/training distributions.

1.1.2. The equivalence
As it turns out, assuming ignorability (Assumption 4) (as well as SUTVA) is equivalent to assuming
that the distributions 𝑃𝑌 (𝑎),𝑋 and 𝑃𝑌 obs,𝑋|𝑇=𝑎 differ by a covariate shift.

Proposition 1. Assume SUTVA (Assumption 3, i.e., consistency [Assumption 1] and no interference [As-
sumption 2]). Then 𝑌 (𝑎) ⟂⟂ 𝑇 | 𝑋 if and only if 𝑃𝑌 (𝑎)|𝑋 = 𝑃𝑌 𝑜𝑏𝑠|𝑋,𝑇=𝑎.

Proof. (⟹) If ignorability and consistency hold, then
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𝑃𝑌 obs|𝑋,𝑇=𝑎 = 𝑃𝑌 (𝑎)|𝑋,𝑇=𝑎 (by consistency)

= 𝑃𝑌 (𝑎)|𝑋. (by ignorability)

(⟸) We have that

𝑃𝑌 (𝑎)|𝑋 = 𝑃𝑌 obs|𝑋,𝑇=𝑎 (by hypothesis)

= 𝑃𝑌 (𝑎)|𝑋,𝑇=𝑎. (by consistency)

𝑃𝑌 (𝑎)|𝑋 = 𝑃𝑌 (𝑎)|𝑋,𝑇=𝑎 means that, conditional on 𝑋, 𝑌 (𝑎) and 𝑋 are independent: 𝑌 (𝑎) ⟂⟂ 𝑇 | 𝑋.  ∎

1.2. Sample reweighting
The idea of sample reweighting is common in statistics. It is a core tenet of techniques such as impor-
tance sampling and importance reweighting. Indeed, the sample reweighting ideas here presented are
occasionally called “sample reweighting à la importance sampling” or similar.

The main idea revolves around the following lemma:

Lemma 1 . Consider two distributions 𝑃  and 𝑄 (with densities d𝑃  and d𝑄) over the same space 𝒰, and
any 𝜙 : 𝒰 → ℝ. Then

𝔼𝑊𝑃∼𝑃 [𝜙(𝑊𝑃 )] = 𝔼𝑊𝑄∼𝑄[
d𝑃(𝑊𝑄)
d𝑄(𝑊𝑄)

⋅ 𝜙(𝑊𝑄)].

Proof (informal!). Write out the expectations as integrals:

𝔼𝑊𝑄∼𝑄[
d𝑃(𝑊𝑄)
d𝑄(𝑊𝑄)

⋅ 𝜙(𝑊𝑄)] = ∫
d𝑃(𝑤)
d𝑄(𝑤)

⋅ 𝜙(𝑤) ⋅ d𝑄(𝑤) d𝑤

= ∫ 𝜙(𝑤) ⋅ d𝑃(𝑤) d𝑤 = 𝔼𝑊𝑃∼𝑃 [𝜙(𝑊𝑃 )].

 ∎

Remark 1. This lemma (and proof) can be fully formalized, in all its generality, by using some measure
theory. Irrespective of having the precise densities d𝑃  and d𝑄, we just have that d𝑃/ d𝑄 is the Radon-
Nikodym derivative of the measure 𝑃  in relation to the measure 𝑄. We can then use the Radon-Nikodym
theorem to prove this fact.

This means that we can use data from a distribution we know (𝑄) reweighted by the density ratio
d𝑃/ d𝑄 in order to infer things about hte distribution we don’t know (𝑃 ). But of course, this assumes
that we know the true density ratio d𝑃/ d𝑄, which is easier said than done.

1.3. Estimation of Density Ratios
A naive procedure to estimate density ratios would be to first individually estimate both densities (e.g.,
by Kernel Density Estimation) and then divide the two estimated densities. However, we can do much
better. As it turns out, density ratio estimation is much more tractable than density estimation!

Entire books have been written on this topic; in particular, (Sugiyama et al., 2012) is a great reference.
In this section, we will only present one particularly neat and practical way of doing this estimation,
based on probabilistic classification. But we emphasize that there are other more sophisticated (and
possibly more accurate) methods available.

Consider we have two distributions, 𝑃  and 𝑄, and we have samples 𝑊 (𝑃)
1 , …, 𝑊 (𝑃)

𝑛𝑃
 and

𝑊 (𝑄)
1 , …, 𝑊 (𝑄)

𝑛𝑄
 from these distributions.
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To do our estimation, let’s consider the following game: first, someone flips a coin. If it’s heads, then
they give us a sample from 𝑃 . If it’s tails, they give us a sample from 𝑄. We only receive the sample,
without knowing whether it came from 𝑃  or from 𝑄. Our goal is to guess that.

Let’s write by 𝐷 ∈ {𝑃 , 𝑄} (a random variable) the distribution from which the other player took the
sample, and write the sample as 𝑊 (𝐷). Note how the following reduces to the density ratio between
𝑃  and 𝑄:

ℙ[𝑊 (𝐷) = 𝑤 | 𝐷 = 𝑃]
ℙ[𝑊 (𝐷) = 𝑤 | 𝐷 = 𝑄]

=
d𝑃(𝑤)
d𝑄(𝑤)

.

Now, by Bayes’ rule:

ℙ[𝑊 (𝐷) = 𝑤 | 𝐷 = 𝑃]
ℙ[𝑊 (𝐷) = 𝑤 | 𝐷 = 𝑄]

=
ℙ[𝐷 = 𝑃 | 𝑊 (𝐷) = 𝑤] ⋅ ℙ[𝑊 (𝐷) = 𝑤]/ℙ[𝐷 = 𝑃]
ℙ[𝐷 = 𝑄 | 𝑊 (𝐷) = 𝑤] ⋅ ℙ[𝑊 (𝐷) = 𝑤]/ℙ[𝐷 = 𝑄]

=
ℙ[𝐷 = 𝑄]
ℙ[𝐷 = 𝑃]

⋅
ℙ[𝐷 = 𝑃 | 𝑊 (𝐷) = 𝑤]
ℙ[𝐷 = 𝑄 | 𝑊 (𝐷) = 𝑤]

.

Moreover, writing 𝑝(𝑤) = ℙ[𝐷 = 𝑃 | 𝑊 (𝐷) = 𝑤],

ℙ[𝐷 = 𝑄]
ℙ[𝐷 = 𝑃]

⋅
ℙ[𝐷 = 𝑃 | 𝑊 (𝐷) = 𝑤]
ℙ[𝐷 = 𝑄 | 𝑊 (𝐷) = 𝑤]

=
ℙ[𝐷 = 𝑄]
ℙ[𝐷 = 𝑃]

⋅
𝑝(𝑤)

1 − 𝑝(𝑤)
.

The nice thing is that we can estimate 𝑝 with “plain” probabilistic classification! All we need to do
is to train 𝑝 on a dataset formed by both our samples from 𝑃  and the ones from 𝑄 (concatenated
together), and labelled 1 if the sample was from 𝑃  and 0 if it was from 𝑄. But it’s important to note
that our predictions should be well-calibrated – which is especially important if we are using Machine
Learning or Bayesian models to do this classification. To do so, one can refer to methods such Platt
Scaling, Isotonic Regression and Histogram Binning, as well as more recent methods such as Venn-
ABERS predictors.

And more, it will hold that

ℙ[𝐷 = 𝑄]
ℙ[𝐷 = 𝑃]

≈
𝑛𝑄/(𝑛𝑄 + 𝑛𝑃 )
𝑛𝑃 /(𝑛𝑄 + 𝑛𝑃 )

=
𝑛𝑄

𝑛𝑃
.

Alternatively, we can approximate

𝔼𝑊∼𝑄[
𝑝(𝑊)

1 − 𝑝(𝑊)
] ≈ 𝔼𝑊∼𝑄[𝐶 ⋅

d𝑃(𝑊)
d𝑄(𝑊)

] = 𝔼𝑊∼𝑃 [𝐶] = 𝐶 ≈
ℙ[𝐷 = 𝑄]
ℙ[𝐷 = 𝑃]

.

It should be noted, though, that oftentimes when density ratios are involved we only need to know it
up to a proportional constant. An example of this is Section 3. In this case, for convenience (and more
accurate estimation), we would ignore the multiplication by ℙ[𝐷 = 𝑄]/ℙ[𝐷 = 𝑃], as that is merely
constant (since it does not involve 𝑤).

2. Means of potential outcomes via sample reweighting
Consider the problem of inferring 𝔼[𝑌 (𝑎)]. Our goal here is to use Lemma 1 along with our assump-
tions to do this.

As pointed out in Section 1.1.2, we can consider the two following distributions, which differ by a
covariate shift (under SUTVA and ignorability):
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𝑃𝑌 (𝑎),𝑋⏟
desired, unobservable

𝑃𝑌 obs,𝑋 | 𝑇=𝑎⏟⏟⏟⏟⏟
observable!

= 𝑃𝑌 (𝑎),𝑋 | 𝑇=𝑎.

Let’s use Lemma 1. We get that

𝔼[𝑌 (𝑎)] = 𝔼[
d𝑃𝑌 (𝑎),𝑋

d𝑃𝑌 obs,𝑋 | 𝑇=𝑎
⋅ 𝑌 obs | 𝑇 = 1]

So all that remains is for us to better figure out what is this density ratio and how to estimate it. Well,

d𝑃𝑌 (𝑎),𝑋

d𝑃𝑌 obs,𝑋 | 𝑇=𝑎
=

d𝑃𝑌 (𝑎),𝑋

d𝑃𝑌 (𝑎),𝑋 | 𝑇=𝑎
(by consistency)

=
d𝑃𝑌 (𝑎) | 𝑋 ⋅ d𝑃𝑋

d𝑃𝑌 (𝑎) | 𝑋,𝑇=𝑎 ⋅ d𝑃𝑋 | 𝑇=𝑎
(factoring distributions)

=
d𝑃𝑌 (𝑎) | 𝑋 ⋅ d𝑃𝑋

d𝑃𝑌 (𝑎) | 𝑋 ⋅ d𝑃𝑋 | 𝑇=𝑎
=

d𝑃𝑋
d𝑃𝑋 | 𝑇=𝑎

(by ignorability)

=
d𝑃𝑋

d𝑃𝑇=𝑎 | 𝑋 ⋅ d𝑃𝑋/ d𝑃𝑇=𝑎
=

d𝑃𝑇=𝑎
d𝑃𝑇=𝑎 | 𝑋

=
ℙ[𝑇 = 𝑎]

ℙ[𝑇 = 𝑎 | 𝑋]
. (by Bayes' rule)

Therefore:

Theorem 1. Under SUTVA and ignorability,

𝔼[𝑌 (𝑎)] = 𝔼[
ℙ[𝑇 = 𝑎]

ℙ[𝑇 = 𝑎|𝑋]
⋅ 𝑌 𝑜𝑏𝑠 | 𝑇 = 1]. (2)

The quantity ℙ[𝑇 = 𝑎|𝑋] is actually quite handy in general, and is called the propensity score (discussed
in e.g., Chapter 11 of (Ding, 2023)), and usually denoted as

𝑒(𝑥) ≔ ℙ[𝑇 = 𝑎 | 𝑋 = 𝑥].

But note that Equation 2 uses the true propensity score, which is unknown in practice. Nevertheless, it
can be proven that approximate versions of this equality hold when using a well-estimated propensity
score (though this is nontrivial to show).

It’s also very important to note that Equation 2 (and the derivation above) makes the positivity as-
sumption (Assumption 6), so that the inverse of the propensity score is well-defined (no division by
zero). But even more than that: though the math holds, things can get problematic if the propensity
score gets even “too close” to zero, as in such cases the weight for some samples will be enormous.
This would not be a problem if we had infinite samples, as the weights would end up compensating
each other. But in reality we have only finite samples, and these blow-ups can be quite unstable.

Remark 2. Indeed, essentially any work using these techniques for estimation in finite samples assumes
not only positivity but that we have known bounds on the propensity scores that are not too large:

0 < 𝑒𝑚𝑖𝑛 ≤ 𝑒(𝑥) ≤ 𝑒𝑚𝑎𝑥 < 1 ∀𝑥.

If [𝑒𝑚𝑖𝑛, 𝑒𝑚𝑎𝑥] is large (i.e., close to [0, 1]), then the intervals produced by these finite-sample methods
becomes extremely large and uninformative.

3. Risk minimization via sample reweighting
Another scenario is that we want to learn models 𝑓 (1), 𝑓 (0) that predict the potential outcomes:
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𝑓 (1)(𝑋) ≈ 𝔼[𝑌 (1) | 𝑋] 𝑓 (0)(𝑋) ≈ 𝔼[𝑌 (0) | 𝑋].

As we have seen previously, we can accomplish this under SUTVA and ignorability by simply regress-
ing on the covariates conditional on the respective treatments:

𝑓 (𝑎) = arg min
𝑓

1
𝑛

∑
𝑛

𝑖=1
𝑇𝑖=𝑎

(𝑓(𝑋𝑖) − 𝑌 obs
𝑖 )2 ≈ arg min

𝑓
𝔼[(𝑓(𝑋) − 𝑌 obs)2 | 𝑇 = 𝑎].

We could argue, however, that what we’d really want to solve is

𝑓 (𝑎)
ideal = arg min

𝑓
𝔼[(𝑓(𝑋) − 𝑌 (𝑎))2],

i.e., minimizing the mean squared error of the potential outcome over the complete distribution, not just
the part where 𝑇 = 𝑎. While the actual global minimum will be equal (under SUTVA&ignorability),
it can be argued that a small MSE conditional on 𝑇 = 𝑎 does not necessarily imply a small MSE mar-
ginally.

To this end, we can again use sample reweighting to approximate the unconditional distribution from
the distribution conditional on 𝑇 :

arg min
𝑓

𝔼[(𝑓(𝑋) − 𝑌 (𝑎))2] = arg min
𝑓

𝔼[
d𝑃𝑌 (𝑎),𝑋

d𝑃𝑌 (𝑎),𝑋|𝑇=𝑎
⋅ (𝑓(𝑋) − 𝑌 (𝑎))2 | 𝑇 = 𝑎]

= arg min
𝑓

𝔼[
ℙ[𝑇 = 𝑎]

ℙ[𝑇 = 𝑎|𝑋]
⋅ (𝑓(𝑋) − 𝑌 (𝑎))2 | 𝑇 = 𝑎]

= arg min
𝑓

ℙ[𝑇 = 𝑎] 𝔼[
1

ℙ[𝑇 = 𝑎|𝑋]
⋅ (𝑓(𝑋) − 𝑌 (𝑎))2 | 𝑇 = 𝑎]

= arg min
𝑓

𝔼[
1

ℙ[𝑇 = 𝑎|𝑋]
⋅ (𝑓(𝑋) − 𝑌 (𝑎))2 | 𝑇 = 𝑎].

Again, ℙ[𝑇 = 𝑎|𝑋] is the propensity score. So this amounts to reweighting our samples by the in-
verse of the propensity score. This can be quite intuitive: if a sample is unlikely to have 𝑇 = 𝑎, then
ℙ[𝑇 = 𝑎|𝑋] will be small and thus its inverse will be large, leading us to give more weight to this
sample. Conversely, if a sample is likely to have 𝑇 = 𝑎, then ℙ[𝑇 = 𝑎|𝑋] will be large and thus its
inerse will be small, yielding a smaller weight and effectively giving more space for the more important
(read, unlikely to be observed) samples to be taken into account.

Remark 3. Everything we’ve done in this section refers to the mean squared error. As it happens, we can
generalize everything to a general loss ℓ(𝑓(𝑋), 𝑌 ), including the mean absolute error, pinball loss, log
loss, and more.
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