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Abstract
Quality statistical inference requires a sufficient
amount of data, which can be missing or hard to
obtain. To this end, prediction-powered inference
has risen as a promising methodology, but exist-
ing approaches are largely limited to Z-estimation
problems such as inference of means and quan-
tiles. In this paper, we apply ideas of prediction-
powered inference to e-values. By doing so, we
inherit all the usual benefits of e-values – such as
anytime-validity, post-hoc validity and versatile
sequential inference – as well as greatly expand
the set of inferences achievable in a prediction-
powered manner. In particular, we show that every
inference procedure that can be framed in terms
of e-values has a prediction-powered counterpart,
given by our method. We showcase the effective-
ness of our framework across a wide range of in-
ference tasks, from simple hypothesis testing and
confidence intervals to more involved procedures
for change-point detection and causal discovery,
which were out of reach of previous techniques.
Our approach is modular and easily integrable
into existing algorithms, making it a compelling
choice for practical applications.

1. Introduction
Statistical inference is ubiquitous in many critical areas of
application, such as medicine and economics. Central to
their use is the availability of moderate amounts of data
to empower our inferences. However, such data can be
expensive to obtain, which complicates matters.

A common strategy is to simply collect a smaller amount of
data, in order to minimize costs. Unfortunately, this gener-
ally leads to more uncertain inferences. Alternatively, there
are methods that leverage auxiliary cheap-to-obtain data
to ‘compensate’ for the missing expensive data. Classical
works in this direction include single imputation and mul-
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tiple imputation methods (Little & Rubin, 2019), but they
generally lack any strong guarantee of correctness. More
recently, (Angelopoulos et al., 2023a) proposed prediction-
powered inference, which allows for versatile procedures
that benefit from strong correctness guarantees, notably in-
cluding unbiasedness and type-I error control under very
light assumptions.

At its heart, the idea of prediction-powered inference is
simple: we leverage a predictive model (which can be arbi-
trarily complex, e.g., large neural networks) to predict the
expensive data from the cheap data. We can then use our
whole dataset to perform our inference by imputing missing
expensive data with predictions from our model, while lever-
aging the available expensive data to quantify our model’s
inaccuracies, debiasing our inference.

Prediction-powered inference has already inspired a large
amount of literature, both methodology-wise (e.g., (Zrnic &
Candes, 2024; Angelopoulos et al., 2023b; Zrnic & Candès,
2023; Gu & Xia, 2024)), as well as in applications such as
language model evaluations (Chatzi et al., 2024; Boyeau
et al., 2024), genome-wide association studies (Miao et al.,
2024) and more. However, throughout, the inference tasks
considered are fairly limited; previous works are essentially
restricted to problems that can be framed in terms of Z-
estimation,1 which includes many common tasks such as
inference of means, quantiles and regression coefficients,
but not much more. In this paper, we significantly expand
this frontier by applying prediction-powered inference to
e-values.

E-values are a recent enticing alternative to p-values. For-
mally, an e-value for a null hypothesis H0 is a nonnega-
tive real random variable E such that, if H0 holds, then
E[E] ≤ 1; by Markov’s inequality, it is then unlikely that
the e-value E is high under the null, and thus a high e-
value (≫ 1) provides evidence against the null hypoth-
esis. Though simple, this is a very powerful notion: e-
values allow for powerful procedures under very lax assump-
tions (e.g., not even i.i.d., nonparametric and nonasymp-
totic) (Howard et al., 2018), naturally handle sequential and
anytime-valid inference (Ramdas et al., 2022), naturally fit

1A Z-estimation problem is one in which we seek to infer a
parameter θ⋆ ∈ Θ such that EZ [ψ(Z; θ

⋆)] = 0, for some known
function ψ.
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into multiple testing and post-selective inference (Wang &
Ramdas, 2020; Xu et al., 2022) and allows for significance
levels to be chosen a posteriori (Koning, 2023; Grünwald,
2022) – properties that are notoriously challenging to obtain
with the more standard p-values, if not outright impossible,
especially in conjunction. Furthermore, e-values are rather
universal: any e-value can be converted to a p-value by sim-
ply taking its reciprocal, and any p-value can be converted
to an e-value by a process termed calibration (Vovk & Wang,
2019), albeit at a slight loss of power.

By working atop e-values, our procedure gains a great
amount of versatility. We show that any inference proce-
dure that operates in terms of e-values has a prediction-
powered counterpart, given by our method. Moreover,
our procedure naturally inherits all of the usual virtues of
e-values, in particular including anytime-validity and post-
hoc validity. In fact, the sequential nature of our proce-
dure further empowers prediction-powered inference meth-
ods, allowing us to arbitrarily improve our predictive model
and data collection policy over the course of the inference,
whereas previous methods require us to fix it a priori, or
learn it from a separate data split.

We illustrate our procedure in four case studies. First, we
use it for a simple problem of estimating prevalence of
diabetes on a population from readily available survey data.
Secondly, we apply our method for a problem of anytime-
valid testing of the hypothesis that a deployed model’s risk
does not exceed a certain safety level, for the purpose of
continuous risk monitoring. We then turn to more involved
inference tasks. On the same context of continuous risk
monitoring, we apply our method for detection of change-
points, in which we seek to identify points in time where
some aspect of the time series has changed. Finally, we
consider how our method enables powerful procedures for
causal discovery under missing (costly) data.

Our contributions

1. We present a new method for prediction-powered in-
ference based on e-values. Besides being applicable to
a much more general setting than the ones previously
considered in the literature, it inherits all the usual ben-
efits of e-values, including sequential inference that is
valid under arbitrary optional stopping and post-hoc va-
lidity. Moreover, it allows for the underlying predictive
model to be updated over the course of the inference,
yielding much better data efficiency compared to prior
work (which require the model to be fit on a separate
data split);

2. We show how the base method can be extended from
simple hypothesis testing with e-values to more in-
volved procedures, first considering confidence inter-
vals/sequences and then general algorithms based on

e-values. In particular, we show that simply substi-
tuting the base e-values by our prediction-powered
e-values yields valid prediction-powered procedures
that are statistically powerful, leading to a modular and
widely applicable technique.

3. We showcase our method in four case studies ranging
from simple mean estimation and hypothesis testing
to change-point detection and causal discovery. This
highlights the wide applicability of our approach, and
we consistently note its much improved performance
compared to baselines in spite of massive (often 100x-
1000x) reductions in data acquisition costs.

2. A General Method
We will first present how we can transform a standard e-
value into a prediction-powered one in the context of hy-
pothesis testing. This mechanism can then be leveraged to
transform more complex procedures powered by e-values
into prediction-powered ones; we first thoroughly instanti-
ate this for confidence sequences, and then more generally
in the context of general e-value-powered algorithms.

2.1. Hypothesis testing

Our goal is to test some null hypothesis H0, and for this
purpose have a stream of data (Xi, Yi)

∞
i=1. The X∗ corre-

spond to ‘cheap’ data that we will always have access to,
while the Y∗ correspond to data that is expensive to obtain,
and as such we have little access to – but, ultimately, the
hypothesis we want to test is over the distribution of the Y∗.s

Data acquisition costs aside, a sound approach to perform
such a hypothesis test is to leverage an e-value En – i.e., a
nonnegative random variable that is a function of the first
n data points, such that under the null H0 it holds that
E[En] ≤ 1. In particular, we consider e-values of the form

En :=

n∏
i=1

ei(Yi), (1)

where (ei)∞i=1 is a predictable sequence of the ‘components’
of the e-value, i.e., each ei can be arbitrarily dependent
on the samples before time i (but nothing else). We will
further require that the e-value’s components be predictably
bounded: for all i, ei(·) ∈ [ai, bi] for some predictable
sequences (ai)∞i=1 and (bi)

∞
i=1, and with ai > 0 for all i.

Most e-values in the literature are already of this form (e.g.,
(Waudby-Smith & Ramdas, 2020; Podkopaev & Ramdas,
2023a;b; Waudby-Smith et al., 2022; Bar et al., 2024)), or
can factored into it. The boundedness assumption can be
enforced by simple rescaling and clipping, albeit at a slight
loss of power.

Should we have access to perfect models µ⋆
i : X → R, i.e.,
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such that µ⋆
i (Xi) = Yi almost surely, then we could instead

only use the predictions atop the cheaper data, µ⋆
i (Xi), to

construct the e-value by its components:

Eimputed
n :=

n∏
i=1

ei(µ
⋆
i (Xi)).

However, in the much more realistic scenario that the model
is not perfect, Eimputed

n will not be a valid e-value.

We can, however, debias Eimputed
n as per prediction-

powered inference (Angelopoulos et al., 2023a) and ac-
tive statistical inference (Zrnic & Candes, 2024). First, en-
dow the data stream with additional random variables ξi ∼
Bern(πi(Xi)) denoting whether we have access to the more
expensive data Yi, where π1, π2, . . . : X → [1 − ai/bi, 1]
is a predictable (i.e., possibly arbitrarily dependent on data
prior to i, but independent of all from i onwards) sequence
of functions that produce the probability of data collection.

With this augmented data stream (Xi, Yi, πi, ξi)
∞
i=1, we can

form a new ‘prediction-powered’ sequence of e-values, with
form similar to that of the active prediction-powered estima-
tors of (Zrnic & Candes, 2024):

eppii := ei(µi(Xi)) +
[
ei(Yi)− ei(µi(Xi))

]
· ξi
πi(Xi)

,

Eppi
n :=

n∏
i=1

eppii , (ξi ∼ Bern(πi(Xi))) .

This construction is motivated by the fact that, conditional
on all data prior to the time point i, the prediction-powered
e-value components eppii match the non-prediction-powered
ones ei in expectation:

Ei

[
ei(µi(Xi)) +

[
ei(Yi)− ei(µi(Xi))

]
· ξi
πi(Xi)

]
= Ei[ei(µi(Xi))]

+ Ei

[[
ei(Yi)− ei(µi(Xi))

]
· ξi
πi(Xi)

| ξi = 1

]
Pi[ξi = 1]

+ Ei

[[
ei(Yi)− ei(µi(Xi))

]
· ξi
πi(Xi)

| ξi = 0

]
Pi[ξi = 0]

= Ei[ei(µi(Xi))] + Ei[ei(Yi)− ei(µi(Xi))] = Ei[ei(Yi)] .

Furthermore, the boundedness of the e-values’ components
and on the π ensure that the quantity is always nonnegative.
Using these facts along with a backward induction argument,
one can prove:

Theorem 2.1. Eppi
n is a valid e-value for the null H0.

Additionally:

(i) If (E0, E1, . . .) form a test supermartingale – i.e., a
nonnegative supermartingale with E[E0] ≤ 1 under
the null H0 – then so is (Eppi

0 , Eppi
1 , . . .);

(ii) More generally, if (E0, E1, . . .) form an e-process –
i.e., a nonnegative stochastic process such that for all
stopping times τ , the null H0 implies that E[Eτ ] ≤ 1 –
then so is (Eppi

0 , Eppi
1 , . . .) for all finite stopping times.

Besides having valid e-values – which assures us of type-
I error control – one should check whether they are effi-
cient/powerful. We can check that, under mild assumptions,
our e-process has good power in terms of the expected
growth rate (Kelly, 1956) as long as the models µi match
the true data Yi sufficiently well:

Theorem 2.2. Suppose that the ei(·) are each Li-Lipschitz,
and that πi(Xi) ≥ 1− ai/bi + ϵi for some ϵi > 0, for all
i. Then there exists some constant c > 0 independent of n
such that

E
[
1

n
logEppi

n

]
≥ E

[
1

n
logEn

]
− c

n

n∑
i=1

E[W (µi(Xi)∥Yi)],

where W (µi(Xi)∥Yi) is the Wasserstein distance between
µi(Xi) and Yi, conditional on all else prior.

More general and precise statements are also possible, but
less compact; see Theorems A.5 in the appendix.

The sequential nature of the prediction-powered e-values
– which holds regardless of whether the original e-values
were of sequential nature – allows for an extremely versa-
tile procedure. For instance, in contrast to most existing
prediction-powered inference procedures, we are able to
update both our underlying prediction model and our data
collection rule over the course of our inference process, with
no restrictions other than not using future information and
having to satisfy the boundedness assumptions.

The resulting algorithm for hypothesis testing is remarkably
simple to implement, given its generality. The pseudocode
can be found in Algorithm 1.

2.2. From hypothesis testing to confidence intervals

With prediction-powered e-values in hand, we can easily
produce prediction-powered confidence intervals/sequences
by considering a family of e-values indexed by the parameter
in question.

Suppose we want to produce a confidence interval/sequence
for a parameter θ⋆ ∈ Θ of the data generating process, and
consider the family of nulls H

(θ)
0 : θ⋆ = θ, indexed by

θ. For each such null, we can construct a corresponding
prediction-powered e-value E

ppi−(θ)
n and then consider the

set
Cppi−(α)

n :=
{
θ ∈ Θ : Eppi−(θ) < 1/α

}
.

By the standard duality between hypothesis tests and confi-
dence sets, it then holds that:
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Algorithm 1 Prediction-Powered E-Values
Input: base e-value components (e1(·), e2(·), . . .)
Output: prediction-powered e-values (Eppi

0 , Eppi
1 , . . .)

Eppi
0 ← 1

Initialize µ : X → Y and π : X → [1− a1/b1, 1]
for each i = 1, 2, . . . do

Get ‘cheap’ data Xi

Sample ξi ∼ Bern(π(Xi))
if ξi = 1 then

Collect ‘expensive’ data Yi

Eppi
i ← Eppi

i−1 ·
ei(Yi)−(1−π(Xi))ei(µ(Xi))

π(Xi)
else
Eppi

i ← Eppi
i−1 · ei(µ(Xi))

end if
Optionally update π and µ

end for

Proposition 2.3. C
ppi−(α)
n is a valid confidence interval –

i.e., P[θ⋆ ∈ C
ppi−(α)
n ] ≥ 1− α. Moreover:

(i) If the underlying e-values form a nonnegative super-
martingale, then the prediction-powered intervals are
anytime-valid (also known as confidence sequences):
P[∀n ∈ N, θ⋆ ∈ C

ppi−(α)
n ] ≥ 1− α;

(ii) More generally, if the underlying e-values form e-
processes, then the prediction-powered intervals are
valid at arbitrary stopping times: P[θ⋆ ∈ C

ppi−(α)
τ ] ≥

1− α for any stopping time τ .

Again, we are also interested in how efficient these confi-
dence sequences are. Just like before, as long as our predic-
tive models are good, we get more concentrated intervals,
as measured by the area under the log-p-landscape:

Proposition 2.4. Under the assumptions of Theorem 2.2,
let ν be a measure over the parameter space Θ. Then there
exists some c for which

E
[∫

1

n
log

1

E
ppi−(θ)
n

dν(θ)

]
≤ E

[∫
1

n
log

1

E
(θ)
n

dν(θ)

]
+

ν(Θ)c

n

n∑
i=1

W (µi(Xi)∥Yi).

These results may be mapped to the actual measure of the
confidence interval, but this is nontrivial; see the Appendix.

2.3. General e-value-powered algorithms

Beyond simple hypothesis testing and confidence sequences,
e-values can also be used as components of more elaborate
inference procedures, for example in causal discovery (e.g.
(Peters et al., 2017)), change point detection (Shin et al.,

2022; Shekhar & Ramdas, 2023a;b) and test-time adapta-
tion (Bar et al., 2024). Our prediction-powered e-values can
also be seamlessly integrated into such procedures.

Consider that we have a family of e-values E
(γ)
n for re-

spective nulls H
(γ)
0 , indexed by γ ∈ Γ, and our overall

algorithm is of the form A((E(γ)
n )γ∈Γ). Moreover, our

algorithm comes endowed with some ‘validity’ property,
and is such that this validity depends only on the inputted
e-values being valid:

Assumption 2.5. If E(γ)
n is a valid e-value for the null H(γ)

0

for every γ ∈ Γ, then A((E(γ)
n )γ∈Γ) is valid.

It is then easy to show that by simply replacing the input e-
values by their prediction-powered counterparts, the validity
property is maintained:

Proposition 2.6. Under Assumption 2.5, it holds that
A((Eppi−(γ)

n )γ∈Γ) is also valid. If the underlying e-values
are e-processes, then it further holds thatA((Eppi−(γ)

τ )γ∈Γ)
is valid for any finite stopping time τ .

It is still also of interest to consider some notion of ‘power’
or ‘efficiency’ of the resulting prediction-powered proce-
dure. However, such an analysis needs to consider more
of the particular algorithm in principle, and so should be
done on a case-by-case basis. Similarly, the appropriate
notion of anytime-validity (which would be implied by the
underlying e-values forming test supermartingales) depends
on the particular definition of validity for the algorithm in
question and so should be considered in a case-by-case basis.
Nevertheless, the case of an e-process still holds generally.

2.4. The Asymptotic Case

Though typically considered in the context of nonasymptotic
statistics, e-values also have asymptotic analogues (Waudby-
Smith et al., 2021; Ramdas & Wang, 2024). We focus
on the main text only on nonasymptotic e-values, but our
ideas directly map to the asymptotic setting just as well; see
Appendix B.1.

3. Experiments and Case Studies
In this section we present four case studies where we use
our method, highlighting the modifications made to the base
methods in the process of prediction-empowerment.

3.1. Estimation of a Mean: Prevalence of Diabetes from
Survey Data

In this first case study we seek to estimate the prevalence of
diabetes on a cohort, upon which we work atop the dataset
of (CDC, 2015). This estimation is key to the scaling of
resources in health systems, as this medical condition can be
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very common and very costly to treat in many populations.

Actually assessing the presence of diabetes can be some-
what costly, requiring through analysis of individual medical
records. On the other hand, we have readily available data
in the form of short survey responses, consisting of simple
questions such as “do you have high blood pressure?”, “do
you have high cholesterol?”, “have you smoked at least 100
cigarettes in your entire life?”, and so on (see Appendix C
for the full list). Considering that these questions capture
health indicators that are fairly predictive of diabetes, it is
appealing to leverage them in a prediction-powered manner.

More formally, we have a data stream (Xi, Yi)
∞
i=1 where

the Xi correspond to the responses to our survey questions,
and the Yi correspond to a binary indicator of whether the
individual is diabetic. For the sake of evaluation, our dataset
includes all Yi, but in a real-world setting it would be ex-
pected that they would be largely missing; we will simulate
this missingness. Our goal is to infer the mean

prevalence of diabetes = E[1[Yi = diabetic]].

This is the mean of a random variable bounded in [0, 1], and
so we can use the e-value-based method for inference of
bounded means of (Waudby-Smith & Ramdas, 2020). Our
confidence interval/sequence is thus given by the set

C(α)
n =

{
θ ∈ [0, 1] : E(θ)

n < 1/α
}
,

for

E(θ)
n =

n∏
i=1

(
1 + λi

(
1[Yi = diabetic]−m

))
,

where (λi)
∞
i=1 is a predictable sequence of bets bounded in

(− 1
1−θ ,

1
θ ). In particular, each E

(θ)
n is a test supermartingale

– and thus a sequence of e-values – for a corresponding
null H(θ)

0 : prevalence of diabetes = θ (Waudby-Smith &
Ramdas, 2020).

These e-values are already in our required form of Equa-
tion (1), but additional care needs to be taken with regards to
the bounds of the e-values’ components. As-is, the compo-
nents are bounded just in [0, 1+max{θ/(1−θ), (1−θ)/θ}].
This means that we would require the data collection prob-
abilities πi(Xi) to be bounded in [1, 1] – i.e., we would
always need to collect data; this is clearly insufficient for
our purposes.

Fortunately, we have a direct way of controlling these
bounds by the means of the bets (λi). If, instead of re-
quiring them to be bounded in (− 1

1−θ ,
1
θ ), we require them

to be bounded in (− c
1−θ ,

c
θ ) for some 0 < c ≤ 1, then

we have that the components are bounded in [1 − c, 1 +
cmax{θ/(1− θ), (1− θ)/θ}], which now leads to nontriv-
ial bounds on the πi(Xi). In particular, for any desired

Figure 1. Prediction-powered confidence sequences. The plot
shows the p-landscape (i.e., parameter on the x-axis, reciprocal of
the e-value on the y-axis) for the confidence sequence generated by
our method (green), along with those for inference using only la-
belled samples (purple) and by using an imputation approach. The
95% confidence intervals for each p-landscape (i.e., region where
the p-landscape is above 0.05) is shaded. Our method provides the
tightest valid intervals – using only the labelled samples or vanilla
PPI (Angelopoulos et al., 2023a) yields weaker inferences, and
using imputation fails to cover the true mean.

lower bound πinf for πi(Xi), we can now solve for some c
for which

1− 1− c

1 + cmax{θ/(1− θ), (1− θ)/θ}
≤ πinf , (2)

satisfying our requirements; we use πinf = 1%.

We then have the following methods for doing inference
with a fixed labelling budget πinf :
• Only labelled samples: collect ⌊πinf · n⌋ labelled sam-
ples, and use the standard, non-prediction-powered e-values
of (Waudby-Smith & Ramdas, 2020) to estimate the mean.
For the bets λi, we use the aGRAPA method proposed by
(Waudby-Smith & Ramdas, 2020), bounded to (− 1

1−θ ,
1
θ );

• Prediction-powered (ours): use our prediction-powered
e-values method atop the e-value with bets truncated as per
Equation (2). The predictive model is updated over the
course of the inference, whenever we get a new data label.
For the collection probabilities πi, we always yield πinf , the
lowest possible value, in an effort to minimize data collec-
tion costs.
• Active prediction-powered (ours): same as the previous
‘prediction-powered’ method, but with a different choice
of collection probabilities πi. This time, rather than opting
for constant, always as low as possible, probabilities, we
follow an approximately optimal choice which takes into
consideration the Xi, as delineated in Appendix B.2. This
gives an ‘active inference’/‘active learning’ flavor to our
method.
• Imputation: we simply learn a predictive model to pre-
dict the missing Yi from the available Xi, and impute the
missing Yi with it without any care to use some prediction-
powered inference method. This will often yield invalid
inferences, but is very common in practice and thus a rele-
vant baseline.
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• Vanilla prediction-powered: for the sake of comparison
to prior work, we also consider the method of (Angelopou-
los et al., 2023a). This method requires the prediction model
to be fixed a priori, so we first split the collected labels in a
training set to train it, and use the remaining labels for their
prediction-powered inference method. For confidence inter-
vals, we use CLT-based ones as proposed by the authors.

Figure 1 shows the result of our experiment. Our prediction-
powered methods provides valid confidence intervals that
are tighter and more concentrated around the true mean in
comparison to only using labelled samples, while the impu-
tation approach is strongly concentrated away from the true
mean, and would lead to invalid conclusions. In comparison
to the method of (Angelopoulos et al., 2023a), our method
provides tighter intervals in spite of its nonasymptotic na-
ture, likely due to its ability to train the predictive model
without a data split.

3.2. Testing the Online Risk: Online Monitoring of a
Deployed Model for Forest Cover Prediction

For our second experiment, we consider the task of moni-
toring the risk of a predictive model for forest cover types
online. Forest cover prediction is of wide use in remote
sensing tasks and particularly for tracking of deforestation
and land use, which is, in turn, very useful for climate
research. Moreover, online risk monitoring is ubiquitous
and applicable to any setting where a predictive model is
involved.

Again we have a data stream (Xi, Yi)
∞
i=1, where Xi indi-

cate input variables to our predictive model – in this case,
corresponding to data from satellite images – and Yi are
the labels denoting the corresponding cover type (which
is a categorical variable). Naturally, Yi is generally miss-
ing – after all, if it weren’t, then we would have no need
to predict it. In our experiment, we work on the dataset of
(Blackard, 1998). For the sake of evaluation, we have ac-
cess to all Yi, but will simulate the missingness. The notion
of risk in which we are interested is given by the 0-1 loss:
Riski(f) = E[1[f(Xi) ̸= Yi]]. We have already trained
the predictive model f independent of our data stream (in
the case of our experiment, in a separate training split) and
have similarly evaluated it on a separate validation set, also
independent of our data stream, upon which we obtained a
validation 0-1 loss of ValRisk. For continuous risk monitor-
ing, we want to test the null hypothesis that

H0 : Riski(f) ≤ ValRisk + ϵtol, for all i = 1, 2, . . . ,

for some tolerance level ϵtol, for example equal to 0.05.
In particular, we would like for this hypothesis test to be
anytime-valid, so that at any point we can reach safe conclu-
sions from it.

Inspired by the work of (Podkopaev & Ramdas, 2021), we

Figure 2. Prediction-powered anytime-valid hypothesis testing.
The plot shows the e-values over time for testing two null hy-
potheses – one on the bottom, which should be rejected, and one
on top, which should not be rejected. Our prediction-powered
e-values provide the strongest valid signal for rejection (E ≥ 20
for a significance level of 95%, marked by the dashed lines), as
the imputation approach rejects before the null is actually violated;
for non-rejection (E < 20), all the methods appear valid, but ours
still attains the highest e-value.

consider the following e-value:

En :=

n∏
i=1

(
1 + λi

(
1[f(Xi) ̸= Yi]− (ValRisk + ϵtol)

))
,

(3)
where (λi)

∞
i=1 is a predictable sequence of bets bounded in[

0, 1/(ValRisk + ϵtol)
)
. This forms a test supermartingale

for the null H0.

Much like in the example of inference of the prevalence
of diabetes in Section 3.1, the e-values are already of the
desired form, but additional care must be taken with regard
to the limits of the components. As-is, they are bounded in
[0, 1 + max{1/(ValRisk + ϵtol)− 1, 0}], meaning that our
collection probabilities would have to be within [1, 1]. Simi-
larly to what we did in Section 3.1, we tweak the bounds for
the bets λi to make them bounded within

[
0, c/(ValRisk +

ϵtol)
)

for some 0 < c ≤ 1, leading to components bounded
in [1 − c, 1 + cmax{1/(ValRisk + ϵtol) − 1, 0}]. We can
then solve for the c that satisfies

1− 1− c

1 + cmax{1/(ValRisk + ϵtol)− 1, 0}
≤ πinf , (4)

for a desired labelling budget πinf , which we take to be
equal 0.5%.

The methods we consider for our experiment are akin to
those of Section 3.1:
• Only labelled samples at every data point i, we sample
ξi ∼ Bern(πinf). If ξi = 1, then we collect that data point

6
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Figure 3. Prediction-powered change-point detection via e-values. The plot shows the exponential moving average of a time series (in
blue), with the few collected labels denoted by the scattered Xs. Our prediction-powered methods detect the change-point accurately,
while the base method that only considers the labelled data points does not detect any change-point.

and update the non-prediction-powered e-value in Equa-
tion (3). Since the data collection is sampled independently
of all else, this is a valid e-value, and forms a test super-
martingale; moreover, only about ≈ πinf · n samples will be
collected. However, only data points where ξi = 1 are used
for inference.
• Prediction-powered (ours): we compute the prediction-
powered e-value atop the base-evalue in Equation (3)
tweaked to satisfy the boundedness conditions as per Equa-
tion (4). We then have two predictive models: one which
is the predictive model whose risk we want to monitor – µ
– and another which is used for prediction-powered infer-
ence, which receives Xi and predicts the 0-1 loss for that
point, 1[µ(Xi) ̸= Yi]. The first model µ is held static over
the course of the inference, while the one for prediction-
powered inference is updated whenever we collect a new
label. Collection probabilities πi(Xi) are held constant at
πinf , leading to label collection matching the baseline of
only using labelled samples.
• Active prediction-powered (ours): the same as our
‘non-active’ prediction-powered method, but label collection
probabilities are given by the approximately optimal choice
presented in Appendix B.2.
• Imputation: as a final baseline, we consider simply im-
puting the 0-1 loss at points where we have not collected the
true label, with no regard to prediction-powreed inference.
This is invalid in general, but commonly used in practice.

Note that standard prediction-powered inference methods
(e.g., from (Angelopoulos et al., 2023a)) are no longer di-
rectly applicable due to the requirement of anytime-validity,
as well as the fact that our hypothesis test does not come
from a two-sided test for a mean (which would then be an
instance of simple Z-estimation).

To fully assess the hypothesis test, we consider two settings
here. In the first setting, there is no change in distribution:
the data stream for the inference follows the exact same
distribution as training and validation, and thus the null

hypothesis should hold. For the second setting, we increas-
ingly poison the labels over the course of time to simulate
distribution drift.

The results can be seen in Figure 2. Without data poisoning,
none of the methods reject the hypothesis, which is appro-
priate; though it is interesting to note that our prediction-
powered methods were the ones with the highest e-values,
managing to stay at around 1. Under data poisoning, both of
our prediction-powered methods detect the distribution drift
extremely quicker than the method that only uses labelled
samples, despite both having access to the same labelled
samples. The active prediction-powered method seems to
reject the hypothesis a tiny bit earlier and yields larger e-
values (i.e., with more evidence towards rejection), at the
cost of just a tiny bit more data. The imputation method
seemingly detects the shift even earlier, but does so before
the null hypothesis is actually falsified; thus, it produces a
false alarm with extremely high confidence.

3.3. Change-Point Detection: Detecting Changes in the
Quality of a Deployed Model

Still in the context of testing the cover prediction model of
Section 3.2, we now consider not just detecting when the
risk goes below a certain level, but detecting any change.
E-values have seen good use in the change-point detection
literature (Shin et al., 2022; Shekhar & Ramdas, 2023a;b);
we opt here for the method proposed in (Shekhar & Ramdas,
2023a), where change-point detection is reduced to a simple
algorithm atop confidence sequences initialized at each time
step. For the underlying confidence sequences, we use the
same ones as in Section 3.1. Compared to Section 3.2, the
only change we make to the data is the introduction of a
crisp change-point for better visualization.

Figure 3 displays a high-frequency exponentially moving
average of our data (to give a notion of the underlying data
stream) that uses data at all points, regardless of whether

7
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Figure 4. Prediction-powered causal discovery with e-values.
We compare our prediction-powered causal discovery method with
one that uses only labelled data. The lighter nodes correspond to
the costly variables, while the darker nodes correspond to cheaper
readily-available ones. The standard base method does not detect
any edges in the causal graph (denoted by the dashed edges), while
ours detects as many edges as the ‘best possible’ method, which
uses all the data points regardless of data acquisition costs.

they are accessible to the analyst; scattered throughout are
the few data points that were labelled and that the analyst
does have access to. Our prediction-powered method de-
tects the change-point accurately while retaining the strong
guarantees of (Shekhar & Ramdas, 2023a), whereas the
non-prediction-powered baseline that uses only available
labelled data fails to detect any change-point.

3.4. Causal Discovery: Constraint-Based Structure
Learning with Costly Covariates

Causal inference is of essence to any area where one plans
interventions, but the usual methods require knowledge of a
DAG describing (a simplified version of) the data generating
process. Causal discovery (a.k.a. causal structure learning)
methods seek to learn this from data. Some particularly
common methods for causal learning include the PC (Burr,
2003) and FCI (Spirtes et al., 1995) algorithms; all of these
belong to the class of so called ‘constraint-based’ structure
learning, where the DAG is inferred by the means of many
hypothesis tests for conditional independencies. In spite of
potential multiple comparison concerns, these algorithms
are generally said to be valid as long as the underlying
hypothesis tests are valid (i.e., control type-I error).

In this section we consider the problem of causal discov-
ery with the PC algorithm (Burr, 2003) with some costly

covariates, which will be generally missing. As is usual
in the causal discovery literature, we evaluate on synthetic
data generated with a randomly generated DAG, in order to
have access to the true DAG. Our DAG features 6 variables,
of which 3 are considered costly. Overall, our cheap data
Xi consists of the 3 always-available variables, whereas the
costly data Yi consists of the 6 full variables. For constraint-
based causal learning, we need to be able to test hypotheses
of the form

H
(A,B,C)
0 : A ⊥⊥ B | C,

where A, B and C consist of subsets of our 6 variables,
possibly empty.

There do exist sequential e-value tests for conditional inde-
pendence (Shaer et al., 2022; Grünwald et al., 2022), but
they work under the Model-X framework, which requires
knowledge of conditionals that are typically inaccessible
in the context of causal discovery. We thus opt instead for
Fisher’s z-transformation of partial correlation test, which is
commonly used in causal discovery implementations (e.g.,
(Markus Kalisch et al., 2012; Zheng et al., 2024)). But it is
based on p-values, is not of sequential nature, is asymptotic,
and works atop rather heavy normality assumptions.

We first need to adapt it to our required form, follow-
ing Equation (1). To do so, we first rearrange our data
stream (Xi, Yi)

∞
i=1 to arrive in batches of B samples,

(Xbatch
j , Y batch

j )∞j=1; these batches will be the unit of data
for our prediction-powered procedure. We can then com-
pute the test’s p-value for each batch, and calibrate this
p-value into an e-value by the means of the following PToE
calibrator (Vovk & Wang, 2019):

PToE(p) =
1− p+ p log p

p(− log p)2
.

To ensure that our e-values’ components are appropriately
bounded, we first clip the p-values (prior to calibration) to
lie within (10−7, 1] (so that they are bounded at all; this
clipping preserves the validity of the p-values), and then
rescale the calibrated e-values by the means of a rescaling
function

rescaleη(e) := η · (e− 1) + 1,

with η chosen so as to satisfy a labelling budget of πinf =
10% (as in the previous sections). Because the p-values are
only valid asymptotically, the batch size B cannot be too
small; we use B = 100.

The results can be seen in Figure 4. When using only la-
belled data according to our data collection budget, the
causal discovery method identifies no edges at all. By using
our prediction-powered e-values, we detect over half of the
edges, matching the best possible scenario (i.e., what would
happen if we had access to the whole dataset).
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A. Proofs
Throughout, we denote by Fi the i-th element of the underlying data filtration.

Theorem A.1 (Theorem 2.1 in the main text). Eppi
n is a valid e-value for the null H0.

Additionally:

(i) If (E0, E1, . . .) form a test supermartingale – i.e., a nonnegative supermartingale with E[E0] ≤ 1 under the null H0 –
then so is (Eppi

0 , Eppi
1 , . . .);

(ii) More generally, if (E0, E1, . . .) form an e-process – i.e., a nonnegative stochastic process such that for all stopping
times τ , the null H0 implies that E[Eτ ] ≤ 1 – then so is (Eppi

0 , Eppi
1 , . . .) for all finite stopping times.

Proof. First, note that Eppi
n is always nonnegative for all n ∈ N: by induction, it holds for n = 0 (where Eppi

n = Eppi
0 = 1),

and, for the inductive step,

Eppi
n+1 = Eppi

n ·
(
en+1(µn+1(Xn+1)) +

[
en+1(Yn+1)− en+1(µn+1(Xn+1))

]
· ξn+1

πn+1(Xn+1)

)
≥ 0

⇐⇒ en+1(µn+1(Xn+1)) +
[
en+1(Yn+1)− en+1(µn+1(Xn+1))

]
· ξn+1

πn+1(Xn+1)
≥ 0;

If ξn+1 = 0, then the left-hand-side equals en+1(µn+1(Xn+1)) ≥ an+1 > 0. Otherwise, it equals

en+1(Yn+1)− (1− πn+1(Xn+1))en+1(µn+1(Xn+1))

πn+1(Xn+1)
≥ an+1 − (1− πn+1(Xn+1))bn+1

πn+1(Xn+1)
≥ 0

⇐⇒ an+1 − (1− πn+1(Xn+1))bn+1 ≥ 0 ⇐⇒ an+1 ≥ (1− πn+1(Xn+1))bn+1

⇐⇒ 1− an+1/bn+1 ≤ πn+1(Xn+1),

which holds by construction.

So all that remains is to show that its properties under the null hold. Hence, from here on out, we assume that the null H0 is
true.

We will first show that, for any n ∈ N, E[Eppi
n ] ≤ 1. To do so, we will first prove the following lemma by backward

induction:

Lemma A.2. Let n ∈ N and A denote an event. Then, for any 1 ≤ k ≤ n, it holds that E[
∏n

i=k e
ppi
i | A,Fk] =

E[
∏n

i=k ei(Yi) | A,Fk]

Proof. The base case is when k = n. Then

E

[
n∏

i=k

eppii | A,Fk

]
= E

[
eppin | A,Fn

]
= E

[
en(µn(Xn)) +

ξn
πn(Xn)

(en(Yn)− en(µn(Xn))) | A,Fn

]
= E [en(µn(Xn)) | A,Fn] + E

[
ξn

πn(Xn)
(en(Yn)− en(µn(Xn))) | ξn = 1, A,Fn

]
P[ξn = 1 | A,Fn]

+ E
[

ξn
πn(Xn)

(en(Yn)− en(µn(Xn))) | ξn = 0, A,Fn

]
P[ξn = 0 | A,Fn]

= E [en(µn(Xn)) | A,Fn] + E
[

1

πn(Xn)
(en(Yn)− en(µn(Xn))) | A,Fn

]
πn(Xn)

= E [en(µn(Xn)) | A,Fn] + E [en(Yn)− en(µn(Xn)) | A,Fn]

= E [en(Yn) | A,Fn] = E

[
n∏

i=k

ei(Yi) | A,Fk

]
.

For the induction step, given that the hypothesis holds for k + 1 ≤ n, we want to show that it holds for k. It follows, using
the law of total expectation:

11
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E

[
n∏

i=k

eppii | A,Fk

]
= E

[
eppik

n∏
i=k+1

eppii | A,Fk

]
= E

[
E

[
eppik

n∏
i=k+1

eppii | A,Fk+1

]
| A,Fk

]

= E

[
eppik E

[
n∏

i=k+1

eppii | A,Fk+1

]
| A,Fk

]
= E

[
eppik E

[
n∏

i=k+1

ei(Yi) | A,Fk+1

]
| A,Fk

]

= E

[(
ek(µk(Xk)) +

ξk
πk(Xk)

(ek(Yk)− ek(µk(Xk)))

)
E

[
n∏

i=k+1

ei(Yi) | A,Fk+1

]
| A,Fk

]

= E

[
ek(µk(Xk)) E

[
n∏

i=k+1

ei(Yi) | A,Fk+1

]
| A,Fk

]

+ E

[
ξk

πk(Xk)
(ek(Yk)− ek(µk(Xk))) E

[
n∏

i=k+1

ei(Yi) | A,Fk+1

]
| ξk = 1, A,Fk

]
P[ξk = 1 | A,Fk]

+ E

[
ξk

πk(Xk)
(ek(Yk)− ek(µk(Xk))) E

[
n∏

i=k+1

ei(Yi) | A,Fk+1

]
| ξk = 0, A,Fk

]
P[ξk = 0 | A,Fk]

= E

[
ek(µk(Xk)) E

[
n∏

i=k+1

ei(Yi) | A,Fk+1

]
| A,Fk

]

+ E

[
1

πk(Xk)
(ek(Yk)− ek(µk(Xk))) E

[
n∏

i=k+1

ei(Yi) | A,Fk+1

]
| A,Fk

]
πk(Xk)

= E

[
ek(µk(Xk)) E

[
n∏

i=k+1

ei(Yi) | A,Fk+1

]
| A,Fk

]

+ E

[
(ek(Yk)− ek(µk(Xk))) E

[
n∏

i=k+1

ei(Yi) | A,Fk+1

]
| A,Fk

]

= E

[
ek(Yk) E

[
n∏

i=k+1

ei(Yi) | A,Fk+1

]
| A,Fk

]
= E

[
E

[
ek(Yk)

n∏
i=k+1

ei(Yi) | A,Fk+1

]
| A,Fk

]

= E

[
E

[
n∏

i=k

ei(Yi) | A,Fk+1

]
| A,Fk

]
= E

[
n∏

i=k

ei(Yi) | A,Fk

]
,

as we desired.

By picking k = 1 and A to be a trivial event in Lemma A.2, we conclude that E[Eppi
n ] = E[

∏n
i=1 e

ppi
i | F1] =

E[
∏n

i=1 ei(Yi) | F1] = E[En] ≤ 1, and so Eppi
n is a valid e-value.

Now let us show that, if the underlying e-values form a test supermartingale, then so is the prediction-powered process. By
definition Eppi

0 = E0 = 1, and so all we need to do is to show that E[Eppi
n+1 | Fn] ≤ Eppi

n . It follows:

12
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E[Eppi
n+1 | Fn] = E[eppin+1 · Eppi

n | Fn] = E[eppin+1 | Fn] · Eppi
n

= E
[
en+1(µn+1(Xn+1)) +

ξn+1

πn+1(Xn+1)
(en+1(Yn+1)− en+1(µn+1(Xn+1))) | Fn

]
· Eppi

n

= E [en+1(µn+1(Xn+1)) | Fn] · Eppi
n

+ E
[

ξn+1

πn+1(Xn+1)
(en+1(Yn+1)− en+1(µn+1(Xn+1))) | ξn+1 = 1,Fn

]
P[ξn+1 = 1 | Fn] · Eppi

n

+ E
[

ξn+1

πn+1(Xn+1)
(en+1(Yn+1)− en+1(µn+1(Xn+1))) | ξn+1 = 0,Fn

]
P[ξn+1 = 0 | Fn] · Eppi

n

= E [en+1(µn+1(Xn+1)) | Fn] · Eppi
n

+ E
[

1

πn+1(Xn+1)
(en+1(Yn+1)− en+1(µn+1(Xn+1))) | ξn+1 = 1,Fn

]
πn+1(Xn+1) · Eppi

n

= E [en+1(µn+1(Xn+1)) | Fn] · Eppi
n + E [en+1(Yn+1)− en+1(µn+1(Xn+1)) | ξn+1 = 1,Fn] · Eppi

n

= E [en+1(Yn+1) | Fn] · Eppi
n

= E [en+1(Yn+1) | Fn] · En ·
Eppi

n

En

≤ En ·
Eppi

n

En
= Eppi

n .

Finally, we assume that the underlying e-values form an e-process for finite stopping times. We want to show that, for any
finite stopping time τ , E[Eppi

τ ] ≤ 1. Well,

E[Eppi
τ ] = E[E[Eppi

τ | τ ]];

When τ = n for each n ∈ N, by Lemma A.2 with k = n and A = {τ = n}, it holds that E[Eppi
n | τ = n] =

E[
∏n

i=1 e
ppi
i | τ = n,F1] = E[

∏n
i=1 ei(Yi) | τ = n,F1] = E[En | τ = n].

Thus
E[Eppi

τ ] = E[E[Eppi
τ | τ ]] = E[E[Eτ | τ ]] = E[Eτ ] ≤ 1,

and so Eppi is an e-process.

To prove the main theorem about power of our prediction-powered e-values, we will use the following change-of-measure
lemma based on the Wasserstein distance:

Lemma A.3. For any distributions P and Q over some space Z and any L-Lipschitz function ϕ : Z → R,

|EP [ϕ]− EQ[ϕ]| ≤ LW (P∥Q),

where W (P∥Q) is the Wasserstein distance between P and Q.

Proof. The proof follows immediately from the representation of the Wasserstein distance as an IPM. The Wasserstein
distance, written as an IPM, is

W (P∥Q) = sup
∥f∥Lip=1

|EP [f ]− EQ[f ]|.

If ϕ is L-Lipschitz, then ϕ/L is 1-Lipschitz, and so

|EP [ϕ]− EQ[ϕ]| = |LEP [ϕ/L]− LEQ[ϕ/L]| = L|EP [ϕ/L]− EQ[ϕ/L]| ≤ L sup
∥f∥Lip=1

|EP [f ]− EQ[f ]| = LW (P∥Q).

13
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Theorem A.4 (Theorem 2.2 in the main text). Suppose that the ei(·) are each Li-Lipschitz, and that πi(Xi) ≥ 1−ai/bi+ϵi
for some ϵi > 0, for all i. Then there exists some constant c > 0 independent of n such that

E
[
1

n
logEppi

n

]
≥ E

[
1

n
logEn

]
− c

n

n∑
i=1

E[W (µi(Xi)∥Yi)].

where W (µi(Xi)∥Yi) is the Wasserstein distance between µi(Xi) and Yi, conditional on all else prior.

Proof. First, note that

E
[
1

n
logEppi

n

]
= E

[
1

n
log

n∏
i=1

eppii

]
=

1

n

n∑
i=1

E
[
log eppii

]
=

1

n

n∑
i=1

E
[
log

(
ei(µi(Xi)) +

ξi
πi(Xi)

[ei(Yi)− ei(µi(Xi))]

)]
.

=
1

n

n∑
i=1

E
[
E
[
log

(
ei(µi(Xi)) +

ξi
πi(Xi)

[ei(Yi)− ei(µi(Xi))]

)
| Yi, ξi, πi(Xi),Fi

]]
.

The inner expectation in the last line is random only over µi(Xi). Moreover, thanks to our assumptions, the value we are
taking the expectation over is Lipschitz as a function of µi(Xi): because of the lower bound on the πi(Xi) with positive
margins ϵi, the value within the log is bounded away from zero, and so the log becomes Lipschitz with some constant u > 0.∥∥∥∥log(ei(·) + ξi

πi(Xi)
[ei(Yi)− ei(·)]

)∥∥∥∥
Lip

≤ u

∥∥∥∥ei(·) + ξi
πi(Xi)

[ei(Yi)− ei(·)]
∥∥∥∥
Lip

;

If ξi = 0, then this equals u ∥ei(·)∥Lip = u · Li. Otherwise, this equals

u

∥∥∥∥ei(·) + ξi
πi(Xi)

[ei(Yi)− ei(·)]
∥∥∥∥
Lip

= u

∥∥∥∥ei(Yi)− (1− πi(Xi))ei(·)
πi(Xi)

∥∥∥∥
Lip

= u
1

πi(Xi)
∥ei(Yi)− (1− πi(Xi))ei(·)∥Lip

= u
1

πi(Xi)
∥−(1− πi(Xi))ei(·)∥Lip

= u
(1− πi(Xi))

πi(Xi)
∥ei(·)∥Lip = u · Li ·

(1− πi(Xi))

πi(Xi)
.

In either case, this Lipschitz constant is upper bounded by c := u · Li ·max
{

(1−πi(Xi))
πi(Xi)

, 1
}

(which does not depend on n).
Hence, by Lemma A.3,

1

n

n∑
i=1

E
[
E
[
log

(
ei(µi(Xi)) +

ξi
πi(Xi)

[ei(Yi)− ei(µi(Xi))]

)
| Yi, ξi, πi(Xi),Fi

]]
.

≥ 1

n

n∑
i=1

E
[
E
[
log

(
ei(Yi) +

ξi
πi(Xi)

[ei(Yi)− ei(Yi)]

)
| Yi, ξi, πi(Xi),Fi

]
− cW (µi(Xi)∥Yi)

]
.

=
1

n

n∑
i=1

E [E [log ei(Yi) | Yi, ξi, πi(Xi),Fi]− cW (µi(Xi)∥Yi)] .

=
1

n

n∑
i=1

E [log ei(Yi)]−
1

n

n∑
i=1

E [cW (µi(Xi)∥Yi)] .

= E
[
1

n
logEn

]
− c

n

n∑
i=1

E [W (µi(Xi)∥Yi)] .
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The following is a more precise statement about the growth rate of our prediction-powered e-values, albeit less directly
interpretable:

Theorem A.5. It holds that

E
[
1

n
logEppi

n

]
= E

[
1

n

n∑
i=1

(1−πi(Xi)) log ei(µi(Xi))

]
+E

[
1

n

n∑
i=1

πi(Xi) log

(
ei(µi(Xi)) +

ei(Yi)− ei(µi(Xi))

πi(Xi)

)]
.

Proof.

E
[
1

n
logEppi

n

]
= E

[
1

n
log

n∏
i=1

eppii

]
=

1

n

n∑
i=1

E
[
log eppii

]
=

1

n

n∑
i=1

E
[
log

(
ei(µi(Xi)) +

[
ei(Yi)− ei(µi(Xi))

]
· ξi
πi(Xi)

)]

=
1

n

n∑
i=1

E
[
E
[
log

(
ei(µi(Xi)) +

[
ei(Yi)− ei(µi(Xi))

]
· ξi
πi(Xi)

)
| Fi

]]

=
1

n

n∑
i=1

E
[
E
[
log

(
ei(µi(Xi)) +

[
ei(Yi)− ei(µi(Xi))

]
· ξi
πi(Xi)

)
| ξi = 1,Fi

]
P[ξi = 1 | Fi]

+ E
[
log

(
ei(µi(Xi)) +

[
ei(Yi)− ei(µi(Xi))

]
· ξi
πi(Xi)

)
| ξi = 0,Fi

]
P[ξi = 0 | Fi]

]
=

1

n

n∑
i=1

E
[
E
[
log

(
ei(µi(Xi)) +

[
ei(Yi)− ei(µi(Xi))

]
· 1

πi(Xi)

)
| Fi

]
πi(Xi)

+ E [log ei(µi(Xi)) | Fi] (1− πi(Xi))

]
=

1

n

n∑
i=1

E
[
πi(Xi) log

(
ei(µi(Xi)) +

[
ei(Yi)− ei(µi(Xi))

]
· 1

πi(Xi)

)
+ (1− πi(Xi)) log ei(µi(Xi))

]

= E
[
1

n

n∑
i=1

(1− πi(Xi)) log ei(µi(Xi))

]
+ E

[
1

n

n∑
i=1

πi(Xi) log

(
ei(µi(Xi)) +

ei(Yi)− ei(µi(Xi))

πi(Xi)

)]
.

To prove the next result we will make use of Ville’s inequality:

Theorem A.6 (Ville’s inequality (Ville, 1939; Ramdas, 2018)). For any nonnegative supermartingale (Lt) and any x > 1,
define the (possibly infinite) stopping time N := inf t ≥ 1 : Lt ≥ x and denote the expected overshoot when Lt surpasses x
as

o = E
[
LN

x
| N <∞

]
≥ 1.

Then,

P[∃t : Lt ≥ x] ≤ E[L0]

ox
≥ E[L0]

x
.

Proposition A.7 (Proposition 2.3 in the main text). C
ppi−(α)
n is a valid confidence interval – i.e., P[θ⋆ ∈ C

ppi−(α)
n ] ≥ 1−α.

Moreover:

(i) If the underlying e-values form a nonnegative supermartingale, then the prediction-powered intervals are anytime-valid
(also known as confidence sequences): P[∀n ∈ N, θ⋆ ∈ C

ppi−(α)
n ] ≥ 1− α;

(ii) More generally, if the underlying e-values form e-processes, then the prediction-powered intervals are valid at arbitrary
stopping times: P[θ⋆ ∈ C

ppi−(α)
τ ] ≥ 1− α for any stopping time τ .
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Proof. By construction, P[θ⋆ ∈ C
ppi−(α)
n ] = P[Eppi−(θ⋆)

n ≤ 1/α] = 1 − P[Eppi−(θ⋆)
n > 1/α]. By Markov, considering

that the null Hθ⋆

0 holds and using Theorem 2.1,

1− P[Eppi−(θ⋆)
n > 1/α] ≥ 1− E[Eppi−(θ⋆)]

1/α
≥ 1− 1

1/α
= 1− α.

If the underlying e-values form a test supermartingale, then by Theorem 2.1 so do the prediction-powered e-values; then,
using Ville’s inequality,

P[∀n ∈ N, θ⋆ ∈ Cppi−(α)
n ] = P[∀n ∈ N, Eppi−(θ⋆)

n ≤ 1/α] = P[sup
n

Eppi−(θ⋆)
n ≤ 1/α]

= 1− P[sup
n

Eppi−(θ⋆)
n > 1/α] ≥ 1− E[Eppi−(θ⋆)

0 ]

1/α
= 1− 1

1/α
= 1− α.

Finally, if the underlying e-values form an e-process, thenby Theorem 2.1 so do the prediction-powered e-values (for finite
stopping times), and so, by Markov,

P[θ⋆ ∈ Cppi−(α)
τ ] = P[Eppi−(θ⋆)

τ ≤ 1/α] = 1− P[Eppi−(θ⋆)
τ > 1/α]

≥ 1− E[Eppi−(θ⋆)
τ ]

1/α
≥ 1− 1

1/α
= 1− α.

Proposition A.8 (Proposition 2.4 in the main text). Under the assumptions of Theorem 2.2, let ν be a measure over the
parameter space Θ. Then there exists some c for which

E
[∫

1

n
log

1

E
ppi−(θ)
n

dν(θ)

]
≤ E

[∫
1

n
log

1

E
(θ)
n

dν(θ)

]
+

ν(Θ)c

n

n∑
i=1

W (µi(Xi)∥Yi).

Proof. By Fubini,

E
[∫

1

n
log 1/Eppi−(θ)

n dν(θ)

]
=

∫
E
[
1

n
log 1/Eppi−(θ)

n

]
dν(θ)

And now we apply Theorem 2.2:∫
E
[
1

n
log 1/Eppi−(θ)

n

]
dν(θ) = −

∫
E
[
1

n
logEppi−(θ)

n

]
dν(θ) ≤ −

∫ (
E
[
1

n
logE(θ)

n

]
− c

n

n∑
i=1

W (µi(Xi)∥Yi)

)
dν(θ)

≤
∫ (

E
[
1

n
log 1/E(θ)

n

]
+

c

n

n∑
i=1

W (µi(Xi)∥Yi)

)
dν(θ)

=

∫
E
[
1

n
log 1/E(θ)

n

]
dν(θ) +

ν(Θ)c

n

n∑
i=1

W (µi(Xi)∥Yi)

= E
[∫

1

n
log 1/E(θ)

n dν(θ)

]
+

ν(Θ)c

n

n∑
i=1

W (µi(Xi)∥Yi).

Considering that the object of interest is a confidence interval, it is desirable to further bound the measure of the interval. We
were unable to prove any sufficiently general result that was (i) nonvacuous, and (ii) decayed reasonably fast as n increased,
and imagine that heavy assumptions are necessary; this may be best done on a case-by-case basis. Nevertheless, here is one
possible somewhat straightforward result.
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Proposition A.9. Under the same conditions of Proposition 2.4, suppose that the prediction-powered e-values are bounded
from above by Mppi (i.e., for all θ ∈ Θ, Eppi−(θ)

n < Mppi almost surely), and similarly for the non-prediction powered
e-values by M (i.e., for all θ ∈ Θ, E(θ)

n < M almost surely). Then: Then

E[ν(Cppi)] ≤
E[
∫
log 1/Eppi−(θ)dν(θ)] + ν(Θ)Mppi

logα+ logMppi
, E[ν(C)] ≤

E[
∫
log 1/E(θ)dν(θ)] + ν(Θ)M

logα+ logM
.

Proof. Consider the measure ν̃(A) = ν(A)/ν(Θ); it is a probability measure. Then:

ν̃(Cppi) = Pθ∼ν̃ [E
ppi−(θ) < 1/α] = Pθ∼ν̃ [1/E

ppi−(θ) > α] = Pθ∼ν̃ [log 1/E
ppi−(θ) > logα];

We want to apply Markov. To do that, we need the left-hand side to be nonnegative; to do so, we add logMppi to both sides,
which yields

Pθ∼ν̃ [log 1/E
ppi−(θ) > logα]; = Pθ∼ν̃ [log 1/E

ppi−(θ) + logMppi > logα+ logMppi]

≤ Eθ∼ν̃ [log 1/E
ppi−(θ) + logMppi]

logα+ logMppi

≤
∫
log 1/Eppi−(θ)dν̃(θ) + logMppi

logα+ logMppi
.

≤
[ν(Θ)]−1

∫
log 1/Eppi−(θ)dν(θ) + logMppi

logα+ logMppi
.

So, multiplying everything by ν(Θ), we get that

ν̃(Cppi)·ν(Θ) = ν(Cppi) ≤ ν(Θ)·
[ν(Θ)]−1

∫
log 1/Eppi−(θ)dν(θ) + logMppi

logα+ logMppi
=

∫
log 1/Eppi−(θ)dν(θ) + ν(Θ) logMppi

logα+ logMppi
.

Finally, taking the expectation on both sides, we get that

E[ν̃(Cppi)] ≤ E

[∫
log 1/Eppi−(θ)dν(θ) + ν(Θ) logMppi

logα+ logMppi

]
=

E[
∫
log 1/Eppi−(θ)dν(θ)] + ν(Θ) logMppi

logα+ logMppi
,

as we desired.

The same can be done for the non-prediction-powered e-values, replacing Eppi with E and Mppi with M .

Most terms in the inequality depend on n, so it’s a bit hard to intuit. But, if the dependence on the n in the expectation of the
log is good enough, then this should be nonvacuous, at least.

Proposition A.10 (Proposition 2.6 in the main text). Under Assumption 2.5, it holds that A((Eppi−(γ)
n )γ∈Γ) is also valid. If

the underlying e-values are e-processes, then it further holds that A((Eppi−(γ)
τ )γ∈Γ) is valid for any finite stopping time τ .

Proof. To prove that A((Eppi−(γ)
n )γ∈Γ) is valid, by Assumption 2.5, it suffices to show that Eppi−(γ)

n is valid for every
γ ∈ Γ; and by Theorem 2.1, this is indeed the case.

Now suppose that the underlying e-values (E
(γ)
n )γ∈Γ form e-processes; then so do the prediction-powered e-values

(E
ppi−(γ)
n )γ∈Γ for finite stopping times, by Theorem 2.1. Then, to prove that A((Eppi−(γ)

τ )γ∈Γ) is valid for any finite
stopping time τ , again by Assumption 2.5 it suffices to show that Eppi−(γ)

τ is valid, which is indeed the case since they form
e-processes for finite stopping times.

B. Additional Results
B.1. The Asymptotic Setting

E-values, though usually defined in non-asymptotic terms, have asymptotic analogues. In particular, a (sequential)
asymptotic e-value is defined as a (sequence of) nonnegative random variable(s) En such that, under the null H0, it holds
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that lim supn→∞ E[En] ≤ 1 (Ramdas & Wang, 2024). We briefly show here that the core points of the theory we build in
the main text can be directly applied here. Most results whose analogues we do not prove still hold, and are just omitted for
conciseness.

Proposition B.1. If En is an asymptotic e-value, then so is its prediction-powered analogue Eppi
n .

Proof. We want to prove that Eppi
n is an asymptotic e-value. It follows, by Theorem 2.1:

lim sup
n→∞

E[Eppi
n ] = lim sup

n→∞
E[En] ≤ 1.

Proposition B.2. If E(θ)
n is an asymptotic e-value for each θinΘ, then C

ppi−(α)
n := {θ ∈ Θ : E

ppi−(θ)
n < 1/α} is an

asymptotic confidence interval, i.e., lim supn→∞ P[θ⋆ ̸∈ C
ppi−(α)
n ] ≤ α.

Proof. It holds that
lim sup
n→∞

P[θ⋆ ̸∈ Cppi−(α)
n ] = lim sup

n→∞
P[Eppi−(θ⋆)

n ≥ 1/α];

By Markov,

lim sup
n→∞

P[Eppi−(θ⋆)
n ≥ 1/α] ≤ lim sup

n→∞

E[Eppi−(θ⋆)
n ]

1/α
= α lim sup

n→∞
E[Eppi−(θ⋆)

n ] ≤ α.

The results related to power (e.g., Theorem 2.2) apply to asymptotic e-values without any modification necessary.

B.2. An approximately optimal choice for πi

Our prediction-powered e-values have, at their core, the customizeable choice of data collection probabilities πi(Xi). While
selecting a constant πi(Xi) = πinf , where πinf is the lowest possible value possible (so as to minimize data collection costs)
is a reasonable approach, it ignores the versatility that the probability can take into account the ‘cheap’ data Xi, which
could significantly improve statistical power when used correctly. In an effort to seek a better strategy, we try to identify an
‘approximately optimal’ choice of πi.

The optimality is in the sense that, at point i in time, the data collection probability function πi(·) should be chosen so as
to maximize the expected log of the e-value, as per (Kelly, 1956); this is also similar, e.g., to the GRAPA and aGRAPA
strategies of (Waudby-Smith & Ramdas, 2020). However, the π also have additional constraints:

(i) Its image must be bounded: πi : X → [1− ai/bi, 1]. I.e., for all x ∈ X , 1− ai/bi ≤ πi(x) ≤ 1.

(ii) It must respect some particular maximal data collection budget: E[πi(Xi)] ≤ Budget.

So we seek to solve the following constrained functional optimization problem:

π⋆
i =argmax

π∈L2

E[logEppi
n | Fi] = argmin

π∈L2

E[− log eppin | Fi]

subject to
1− ai/bi ≤ πi(x) ≤ 1 for (almost) all x ∈ X
E[π(Xi) | Fi] ≤ Budget,

where we assume that the domain of π is bounded (so that there are functions that satisfy the first domain, since π is always
positive).

Our approximate solution to this is as follows: the functional gradient of our (unconstrained) loss is given by

π 7→ E
[
h

(
ei(Yi)− (1− π(Xi))ei(µi(Xi))

ei(µi(Xi)) · π(Xi)
− log

)
− 1 | Xi,Fi

]
,
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where h(t) = 1/t− log 1/t = 1/t+ log t. The h function is a bit inconvenient for solving this problem in closed form, so,
inspired by (Waudby-Smith & Ramdas, 2020), we do a Taylor approximation around some point a (which turns out to later
combine with the parameter to control the budget constraint); this leads to the following approximate functional gradient:

π 7→ αa + βa/πinfE
[

ei(Yi)

ei(µi(Xi))
| Xi,Fi

]
− βa

1− πinf

πinf
,

where αa = log a+ 2/a− 2 and βa = (a− 1)/a2.

The uncontsrained solution is then given by

π⋆(Xi) ≈ −
(
E
[

ei(Yi)

ei(µi(Xi))
| Xi,Fi

]
− 1

)
/(αa/βa + 1),

and KKT conditions give (in a slightly handwavy manner) that:

• If the unconstrained optimum above satisfies the boundedness constraint, then that is the optimal choice;

• If αa + βa(E
[

ei(Yi)
ei(µi(Xi))

| Xi,Fi

]
/πinf − (1− πinf)/πinf) ≤ 0, then π⋆(Xi) = πinf ;

• Otherwise, π⋆(Xi) = 1.

C. Datasets
C.1. For Section 3.1

We use the dataset of (CDC, 2015). It is a tabular dataset, where each row corresponds to an individual; the targets Yi in
the original dataset denote whether the individual was (i) diabetic, (ii) pre-diabetic, or (iii) neither. For the purposes of our
experiment, we only look for whether they were diabetic or not. The covariates are effectfully responses to the following
simple survey questions:

• “do you have high blood pressure?”

• “do you have high cholesterol?”

• “how long has it been since the last time you have checked your cholesterol levels?”

• “what is your body mass index (BMI)?”

• “have you smoked at least 100 cigarettes in your entire life?”

• “has you ever been told you had a stroke?”

• “have you been diagnosed with coronary heart disease (CHD) or myocardial infarction (MI)?”

• “how much physical activity have you done in the past 30 days (excluding job)?”

• “how often do you consume fruit?”

• “how often do you consume vegetables?”

• “how often do you consume alcohol?”

• “do you have health care coverage, including health insurance, prepaid plans such as HMO, etc.?”

• “Was there a time in the past 12 months when you needed to see a doctor but could not because of cost?”

• “Would you say that in general your health is: [excellent / very good / good / fair / poor]”

• “Now thinking about your mental health, which includes stress, depression, and problems with emotions, for how many
days during the past 30 days was your mental health not good?”
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• “Now thinking about your physical health, which includes physical illness and injury, for how many days during the pat
30 days was your physical health not good?”

• “Do you have serious difficulty walking or climbing stairs?”

• “What is your age?”

• “What is your highest level of education?”

• “What is your level of income?”

C.2. For Sections 3.2 and 3.3

We use the dataset of (Blackard, 1998). Upon this dataset, in a training split, we train a simple random forest classification
model. We also separate a validation split to compute the validation loss in Section 3.2. At evaluation time:

• For the ‘non-poisoned’ data stream in Section 3.2, where the null should not be rejected, we just use the data remaining
after the training and validation splits.

• For the ‘poisoned’ data stream in Section 3.2, we switch the label with a probability of

clamp[0,1]

((
t

0.5

)2
)
,

for time t ∈ [0, 1].

• For the data stream in Section 3.3, we switch the label with a probability of

1[t ≥ 0.3] · clamp[0,1]

((
t+ 1

5
+ 0.2

)2
)
,

for time t ∈ [0, 1]. The indicator causes a visible change in the time series, good for visualization. The remaining bit is
done differently from in the previous section so that the change in the distribution is not too drastic.

C.3. For Section 3.4

We generate a random DAG with 6 nodes using the Erdös-Renyi procedure, and mark the last three of these nodes as ‘costly’.
Relations between the nodes are given by linear functions, whose weights and biases are sampled randomly, with additional
independence gaussian noise with a standard deviation of 0.4.
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