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Summary
Combinatorial and non-decomposable losses pose computational and theoretical chal-
lenges, with many classification algorithms resorting to surrogates. In this work, we:

• introduce a fast and exact stagewise optimization algorithm, dubbed ExactBoost, that
boosts stumps to the actual loss function;

• develop a novel extension of margin theory to the non-decomposable setting, recover-
ing a guarantee previously available only to decomposable losses (Bartlett et al. 1998;
Koltchinskii and Panchenko 2002; Schapire and Freund 2013);

• bound the generalization error of ExactBoost for metrics with different levels of non-
decomposability, e.g. area under the ROC curve (AUC) and Kolmogorov-Smirnov (KS);

• empirically evaluate ExactBoost’s performance against surrogate-based and exact algo-
rithms available, showing it is generally superior, especially as an ensembler.

Overview of ExactBoost
The main idea behind ExactBoost is stagewise optimization tailored to a margin-adjusted
empirical loss. Take (X1, y1), . . . , (Xn, yn)

iid∼ D and a loss L̂ that is invariant under
rescaling and translation in its first argument. The goal is to find a score function where
higher scores S(Xi) should indicate higher likelihood of yi = 1. It will be assumed that,
after T rounds, a score has the form S(Xi) =

∑T
t=1wtht(Xi), with wt ≥ 0,

∑T
t=1wt =

1, ht ∈ H, and the set of weak learners H are binary stumps of the form

H =
{
±1[X(j)≤ξ] ± 1[X(j)>ξ] : ξ ∈ R, j ∈ [p]

}
. (1)

In order to attenuate overfitting, we consider the margin-adjusted loss L̂θ(S, y) = L̂(S−
θy, y), where θ > 0 is a margin parameter.

The method works by picking (ξt, jt, at, bt) that solves

min
ξ∈R,j∈[p],ã,b̃∈R

L̂
(
St−1 + ã1[X(j)≤ξ] + b̃1[X(j)>ξ] − (1 + |b̃ − ã|/2)θy, y

)
, (2)

and setting St = St−1 + at1[X(jt)≤ξt] + bt1[X(jt)>ξt].

The resulting algorithm is called ExactBoost, as it is based on the exact loss function
provided rather than a surrogate. Note it takes as input an initial set of scores which
could be any starting point, including scores trained by other learning models.

Algorithm 1: ExactBoost
function ExactBoost(data (X, y), initial scores S0,

margin θ, bins b, iterations T , estimator runs E)
for e ∈ {1, . . . , E} do
Se ← S0

for t ∈ {1, . . . , T} do
Xs , ys ← subsample X, y
for j ∈ {1, . . . , p} do
L̂(h)← L̂θ(Se(Xs

(j)
) + h(Xs

(j)
), ys)

hj ← argminhL̂(h) //Algorithm 2

end for
h ← argminhj L̂θ(Se(Xs) + hj(X

s), ys)

S′e ← Se + h

if L̂θ(S′e(X), y) ≤ L̂θ(Se(X), y) then
Se ← S′e
Se ← (Se −minSe)/(maxSe −minSe)

end if
end for

end for
return mean(S1, . . . , SE)

Algorithm 2: Iterative Minimization
function Min(loss L̂θ, data X(j), labels y, scores S,
margin θ)
Ξ← [minX(j),maxX(j)]

A← [−1, 1]; B ← [−1, 1]

for k ∈ {1, . . . , c} do
l?← +∞
for bisections (Ξ(b), A(b), B(b)) do

for i ∈ {1, . . . , n} do
s ← S + A(b)1[X(j)≤Ξ(b)] + B(b)1[X(j)>Ξ(b)]

si ← Si if yi = 0 otherwise Si
end for
l?← L̂θ(s, y) if L̂θ(s, y) < l?

end for
end for
IΞ ← {Ξ,Ξ}; IA← {A,A}; IB ← {B,B}
S(a, b, ξ)← S + a1[X(j)≤ξ] + b1[X(j)>ξ]

(ξ?, a?, b?)← argmin
ξ∈IΞ,a∈IA,b∈IB

L̂θ(S(a, b, ξ), y)

return S + a?1[X(j)≤ξ?] + b?1[X(j)>ξ?]

Theoretical Results
Notation Let D be a probability distribution over (X, y) ∈ Rp × {0, 1}, and D0 (re-
spectively, D1) denote the conditional distribution of X when y = 0 (respectively, 1).
Conditionally on n1 and n0 respectively, the subsamples X1 := (Xi : i ∈ [n], yi = 1) and
X0 := (Xi : i ∈ [n], yi = 0) are iid fromD1 andD0. Score functions S : Rp → [−1, 1] are
convex combinations of elements in a family of measurable functions H : Rp → [−1, 1].
Denote by Rn(H) the Rademacher complexity H with respect to D and Rn,y(H) for
y ∈ {0, 1} the complexities with respect to D0 and D1. Note Rn(H) = O(

√
log p/n)

when the set of weak learners H is as in (1).

Define the populational AUC and the populational KS losses as

AUC(S) := 1− Pr{S(X) > S(X ′)},

KS(S) := 1− sup
t∈R

(
Pr
X∼D0

{S(X) ≤ t} − Pr
X∼D1

{S(X) ≤ t}
)
.

Theorem 1.Given θ > 0, δ ∈ (0, 1), and a class of functions H from Rp to [−1, 1], the
following holds with probability at least 1 − δ: for all score functions S : Rp → [−1, 1]
obtained as convex combinations of the elements of H,

AUC(S) ≤ ÂUCθ(S) +
4

θ
ζAUC(H) +

√
2 log(1/δ)

min{n0, n1}
,

where ζAUC(H) = Rmin{n0,n1},0(H) +Rmin{n0,n1},1(H).

For ExactBoost, where H is given by (1), the theorem implies that the score S produced
by the algorithm satisfies AUC(S) ≤ ÂUCθ(S) + o(1) with high probability whenever
min{n0, n1} � θ−2 log p. This result can be extended to similar pairwise losses.
Theorem 2.Given θ > 0, δ ∈ (0, 1), and a class of functions H from Rp to [−1, 1], the
following holds with probability at least 1 − δ: for all score functions S : Rp → [−1, 1]
obtained as convex combinations of the elements of H,

KS(S) ≤ K̂Sθ(S) +
8

θ
ζKS(H) +

√
log(2/δ)

2

(
1
√
n0

+
1
√
n1

)
,

where ζKS(H) = Rn0,0(H) +Rn1,1(H) + n
−1/2
0 + n

−1/2
1 .

In words, a score that achieves a small margin-adjusted KS loss should, with high probability,
have good performance on the population. In the specific case of ExactBoost, the theorem
above yields with probability greater than 1− δ,

KS(S) ≤ K̂Sθ(S) + C

√
θ−2(1 + log p) + log(2/δ)

min{n0, n1}
,

with C > 0 a universal constant. Treating δ as fixed, good training performance on
the margin-adjusted loss leads to good generalization when the number of positive and
negative examples in the data are much larger than θ−2 log p.

Subsampling Subsampling can help ExactBoost avoid overfitting. The next proposition
is helpful in controlling its impact in the optimization procedure for some losses.
Proposition 1. Let L̂ be either the ÂUC or the K̂S loss. Consider a subset of indices
I = I0 ∪ I1 ⊂ [n] chosen independently and uniformly at random with equal number
of positive and negative cases, |I0| = |I1| = k . Let hR be the optimal stump over the
reduced sample {(Xj, yj)}j∈I and score S and h∗ the optimal stump over the entire sample
{(Xi, yi)}i∈[n]. Then,

E[L̂(S + hR)] ≤ L̂(S + h∗) +
e

k
,

where the expectation is over the choice of I.

Using random subsets of observations in ExactBoost leads to an expected error close to
optimal when the subset has a balanced proportion of positive and negative examples.

Experiments
Benchmarks ExactBoost is compared to many learning algorithms: AdaBoost, k-nearest
neighbors, logistic regression and random forest (via their Scikit-Learn implementation),
gradient boosting (via XGBoost) and a 4-layer neural net (via TensorFlow). Methods that
specifically optimize the performance metric are also considered: RankBoost (Freund et al.
2003) for AUC and DMKS (Fang and Chen 2019) for KS.

Hyperparameters Hyperparameters were fixed throughout the experiments. Baseline
models were trained with the package-provided hyperparameters. Aided by experimental
evidence on held-out datasets, ExactBoost uses E = 250 runs, T = 50 rounds, subsam-
pling of 20% and margin of θ = 0.05.
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Fig 1: KS loss landscape highlighting ExactBoost’s optimization trajectories on dataset heart via UMAP, going from
left to right. More runs E lead to better train and test losses.

Datasets and timings Table 1 displays the main characteristics of each dataset, which
span various applications, and range from balanced to imbalanced. Timing comparisons
against exact benchmarks are also provided.

Dataset Obs. Features Positives RankBoost DMKS

a1a 1605 119 24.6% 3.10x 34.50x
german 1000 20 70.0% 11.10x 2.00x
gisette 6000 5000 50.0% OOT 36.70x
gmsc 150000 10 6.7% OOT 87.50x
heart 303 21 45.9% 1.90x 23.70x
iono 351 34 64.1% 2.90x 4.70x
liver 145 5 37.9% 3.50x 17.40x

Table 1: Dataset properties and timings of algorithms relative to ExactBoost. ExactBoost is always faster (> 1×).
OOT indicates the time budget of 5 days was exceeded (see the paper for details on computational setup).

Results Figure 2 shows that ExactBoost has good performance against surrogate alter-
natives. Results in the paper show that ExactBoost is also generally better as a standalone
estimator than loss-specific optimizers such as RankBoost and DMKS.
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Fig 2: Test error for ExactBoost vs surrogate methods as estimators. Alternatives are generally worse than
ExactBoost or statistically indistinguishable.

Ensembling ExactBoost is also a great ensembler. Six base models were used: Ad-
aBoost, k-nearest neighbors, logistic regression, neural network, random forest and XG-
Boost. These models were trained on training folds, and their predictions on test folds
were used as features for the ensemble models. Tables 2 and 3 show the results of using
different surrogate and exact models as ensemblers.

Dataset ExactBoost AdaBoost Logistic XGBoost RankBoost

a1a 0.13± 0.0 0.17± 0.0 0.14± 0.0 0.28± 0.1 0.16± 0.0
german 0.23± 0.0 0.32± 0.0 0.24± 0.0 0.35± 0.0 0.30± 0.1
gisette 0.00± 0.0 0.01± 0.0 0.01± 0.0 0.02± 0.0 0.01± 0.0
gmsc 0.15± 0.0 0.14± 0.0 0.31± 0.0 0.41± 0.0 0.15± 0.0
heart 0.12± 0.0 0.18± 0.1 0.12± 0.0 0.23± 0.1 0.15± 0.0
iono 0.04± 0.0 0.05± 0.0 0.07± 0.0 0.09± 0.0 0.05± 0.0
liver 0.30± 0.1 0.34± 0.1 0.34± 0.1 0.38± 0.0 0.38± 0.1

Table 2: Evaluation of AUC ensemblers. ExactBoost is generally the top performer.

Dataset ExactBoost AdaBoost Logistic XGBoost DMKS

a1a 0.37± 0.1 0.44± 0.1 0.40± 0.1 0.57± 0.1 0.49± 0.1
german 0.50± 0.1 0.68± 0.1 0.53± 0.1 0.69± 0.1 0.53± 0.1
gisette 0.04± 0.0 0.04± 0.0 0.07± 0.0 0.04± 0.0 0.10± 0.0
gmsc 0.43± 0.0 0.44± 0.0 0.73± 0.0 0.83± 0.0 0.46± 0.0
heart 0.34± 0.1 0.38± 0.1 0.37± 0.1 0.46± 0.1 0.40± 0.0
iono 0.13± 0.1 0.18± 0.1 0.18± 0.1 0.19± 0.1 0.27± 0.1
liver 0.53± 0.1 0.60± 0.2 0.59± 0.2 0.76± 0.0 0.60± 0.2

Table 3: Evaluation of KS ensemblers. ExactBoost is always the top performer.

Takeaways
The main takeaways from the proposed boosting algorithm are:

• first-order surrogate methods are widely used in classification tasks, but there is value
to be gained in working with the intended loss function;

• ExactBoost’s theoretical guarantees translate to compelling empirical performance;
• computational implementations can be made reasonably fast through interval arithmetic;
•we expect the margin extension and theoretical results presented to hold over more
general classes of combinatorial and non-decomposable losses beyond AUC and KS (see
the main paper for the precision at k loss).
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