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Abstract
Many classification algorithms require the use of
surrogate losses when the intended loss function
is combinatorial or non-decomposable. We intro-
duce a fast and exact stagewise optimization algo-
rithm, dubbed ExactBoost, that boosts stumps to
the actual loss function. By developing a novel ex-
tension of margin theory to the non-decomposable
setting, it is possible to bound the generalization
error of ExactBoost for many metrics with differ-
ent levels of non-decomposability.

1. Introduction

Several classification tasks involve combinatorial and non-
decomposable (CND) loss functions. A combinatorial met-
ric is computed in terms of indicator functions, while non-
decomposable metrics cannot be reduced to a sum of loss
functions on each sample point. Note approaches based on
convex optimization or stochastic gradient descent are not
readily applicable without resorting to surrogate losses.

Assume the data comes as independent and identically dis-
tributed (iid) points (Xi, yi)

n
i=1, with features Xi ∈ Rp and

binary labels yi ∈ {0, 1}, and the goal is to learn score
functions S : Rp → [−1, 1] that minimize a certain loss
function. Three important CND losses are:

ÂUC(S, y) = 1− 1

n1

∑
yi=1

1

n0

∑
yj=0

1[S(Xi)>S(Xj)], (1)

K̂S(S, y) = 1−max
t∈R

n∑
i=1

ρi1[S(Xi)≤t], (2)

P̂@k(S, y) = 1− 1

n

n∑
i=1

yi1[i∈Mk], (3)
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where ρi = 1/n0 if yi = 0 and ρi = −1/n1 if yi = 1, and
Mk denotes the set of indices i = 1, . . . , n achieving the
highest k scores. In this paper, we focus on the Kolmogorov-
Smirnov (KS) and area under the ROC cuve (AUC) losses,
with the analogous results for the precision at k (P@k) loss
relegated to the Supplementary Material.

This paper considers a stagewise derivative-free optimiza-
tion procedure via boosted stumps tailored to the exact loss
function with a margin condition, called ExactBoost. While
margin theory is readily applicable in the decomposable
setting (Zhai et al., 2013; Schapire & Freund, 2013), a novel
extension is developed here for CND losses.

Given scores S = {S(X1), . . . , S(Xn)}, labels y =

{y1, . . . , yn} and loss function L̂ : [−1, 1]n×{0, 1}n → R,
ExactBoost minimizes L̂(S,y) by iteratively solving

min
h
L̂θ(S+h,y) s.t. h(X) = a1[X(j)≤ξ]+ b1[X(j)>ξ],

with a, b, ξ ∈ R, j ∈ {1, . . . , p}, and where L̂θ is a margin-
adjustment over L̂, h : Rp → R is a stump andX(j) denotes
the jth feature. Using the discrete structure of CND losses
and interval arithmetic, ExactBoost is of order O(pn log n).

Contributions We propose a fast, exact stagewise optimiza-
tion algorithm for CND losses using interval arithmetic.
The method comes with provable optimality bounds on its
generalization error due to a novel extension of margin the-
ory. Its empirical performances is comparable or superior
to general-purpose and loss-specific procedures available.

2. Overview of ExactBoost
The main idea behind ExactBoost is stagewise optimiza-
tion tailored to a margin-adjusted empirical loss. Take
(X1, y1), . . . , (Xn, yn)

iid∼ D and a loss L̂ that is invariant
under rescaling and translation in its first argument. The
goal is to find a score function where higher scores S(Xi)
should indicate higher likelihood of yi = 1. It will be
assumed that, after T rounds, a score has the form

S(Xi) =

T∑
t=1

wtht(Xi), (4)
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with wt ≥ 0,
∑T
t=1 wt = 1, ht ∈ H, and the set of weak

learnersH are binary stumps of the form

H =
{
±1[X(j)≤ξ] ± 1[X(j)>ξ] : ξ ∈ R, j ∈ [p]

}
. (5)

For stagewise minimization, at iteration t, set (αt, ht) =

argminα,h L̂ ((St−1 + αh)/(1 + α),y) , where α ≥ 0,
h ∈ H, St−1 = (St−1(X1), . . . , St−1(Xn)), h =
(h(X1), . . . , h(Xn)) and y = (y1, . . . , yn). Then, let
St = (St−1 + αtht)/(1 + αt) or, as the loss is scaling-
invariant, St = St−1 + αtht, and go to the next iteration.

To attenuate overfitting, consider the margin-adjusted loss:

L̂θ(S,y) = L̂(S− θy,y), (6)

where θ > 0 is a margin parameter. Scores for positive
labels are artificially decreased, forcing the algorithm to
increase the confidence when correctly classifying samples.
More precisely, Theorem 2 below shows that the minimizing
L̂θ via ExactBoost provides an upper bound on the value
of the populational KS loss. Similar results are presented
for the AUC and P@k losses in the supplementary material.
Each of these losses is emblematic of a different level of non-
decomposability and the corresponding proof techniques
may be employed for losses of similar structure. These
results recover a guarantee available to decomposable losses
(Bartlett et al., 1998; Koltchinskii & Panchenko, 2002) and
lead to algorithms that generalize well, as Section 4 shows.

The algorithm must iteratively solve

(αt, ht) = argminα,h L̂ (St−1 − θy + α(h− θy),y) ,

for which it is enough to pick (ξt, jt, at, bt) that solves

min
ξ∈R,j∈[p],ã,b̃∈R

L̂
(
St−1 + ã1[X(j)≤ξ] + b̃1[X(j)>ξ]

− (1 + |b̃− ã|/2)θy,y
)
, (7)

and set St = St−1+at1[X(jt)
≤ξt]+ bt1[X(jt)

>ξt]. Note the
discrete nature of CND losses allows the problem above to
be solved by only considering a finite set of ξ, ã and b̃: for
ξ, it suffices to look at the unique values of feature X(j),
j ∈ [p], and for a and b the unique values of S(Xi), i ∈ [n].

The resulting algorithm is called ExactBoost, as it is based
on the exact loss function provided rather than a surrogate.
Algorithm 1 includes the full pseudocode. Note it takes as
input an initial set of scores which could be any starting
point, including scores trained by other learning models.

In order to solve (7), we use a space subdivision scheme
similar to bisection: for each iteration, we use interval arith-
metic (IA) to evaluate an upper bound on the value of the
loss for each subdivision, and further iterate only on the cell
with the highest upper bound. This optimization procedure

Algorithm 1 ExactBoost
function ExactBoost(data (X,y), initial scores S0, margin θ,
bins b, iterations T , estimator runs E)
for e ∈ {1, . . . , E} do
Se ← S0

for t ∈ {1, . . . , T} do
Xs,ys ← subsample X,y
for j ∈ {1, . . . , p} do
L̂(h)← L̂θ(Se(X

s
(j)) + h(Xs

(j)),y
s)

hj ← argminhL̂(h) //Algorithm 2
end for
h← argminhj

L̂θ(Se(X
s) + hj(X

s),ys)

S′e ← Se + h

if L̂θ(S′e(X),y) ≤ L̂θ(Se(X),y) then
Se ← S′e
Se ← (Se −minSe)/(maxSe −minSe)

end if
end for

end for
return mean(S1, . . . , SE)

is of order O(cf(n)), where f(n) is the cost of evaluating
the loss with IA, and c is the desired number of bits of pre-
cision in our result. This makes ExactBoost O(pn log(n)).

To avoid overfitting, subsampling is used (see Subsection
3 for theoretical guarantees). Also, randomized runs of the
algorithm are averaged, similar in spirit to random forests,
and can be trivially parallelized. More details about the
implementation are in the Supplementary Material.

Algorithm 2 Iterative Minimization

function Min(loss L̂θ , data X(j), labels y, scores S, margin θ)
Ξ← [minX(j),maxX(j)]; A← [−1, 1]; B ← [−1, 1]
for k ∈ {1, . . . , c} do
l? ← +∞
for bisections (Ξ(b), A(b), B(b)) do

for i ∈ {1, . . . , n} do
s← S +A(b)1[X(j)≤Ξ(b)] +B(b)1[X(j)>Ξ(b)]

si ← s if yi = 0 otherwise s
end for
if L̂θ(s,y) < l? then
l? ← L̂θ(s,y) // L̂θ(s,y) = [L̂θ(S, y), L̂θ(S, y)]

end if
end for

end for

3. Theoretical Results
Assume the score function is a convex combination of sim-
ple functions coming from a general family H, as in (4).
Then the population error of S can be upper bounded by the
sum of a margin-adjusted sample error of S plus an error
depending onH. Crucially, the stochastic error is controlled
uniformly over S and only depends on the class of simple
functionsH. For ExactBoost,H is the set of stumps in (5),
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and, from the results below, one can allow for a number
of features that is nearly as large as an exponential in the
number of positive and negative examples.

The theoretical results presented are based on the KS and
AUC losses, but hold in far greater generality. For example,
see the Supplementary Material for P@k results. While the
guarantees for each loss are slightly different, the margin
adjustment on each loss is essentially the same.

The results below follow previous work in obtaining empir-
ical bounds for classification tasks (Schapire et al., 1998;
Bartlett & Mendelson, 2002), though that work is not di-
rectly applicable to CND losses. The results presented here
also differ in spirit from those obtained via surrogate losses,
such as (Kar et al., 2015; Agarwal, 2013). Surrogate metrics
can provide upper bounds of the desired loss but often lack a
natural quantitative interpretation. The theorems below, on
the other hand, guarantee that minimizing a margin-adjusted
empirical loss leads, with high probability, to a small popu-
lation loss. This is the main idea powering ExactBoost.

Notation. Let D be a probability distribution over (X, y) ∈
Rp × {0, 1}, and D0 (respectively, D1) denote the condi-
tional distribution of X when y = 0 (respectively, 1). Con-
ditionally on n1 and n0 respectively, the subsamples X1 :=
(Xi : i ∈ [n], yi = 1) and X0 := (Xi : i ∈ [n], yi = 0)
are iid from D1 and D0. Score functions S : Rp → [−1, 1]
are convex combinations of elements in a family of measur-
able functions H : Rp → [−1, 1]. Denote by Rn(H) the
Rademacher complexityH with respect to D andRn,y(H)
for y ∈ {0, 1} the complexities with respect to D0 and D1.
NoteRn(H) = O(

√
log p/n) whenH is as in (5).

Define the populational AUC as

AUC(S) := 1− Pr{S(X) > S(X ′)}

and the populational KS loss as

KS(S)=1− sup
t∈R

(
Pr

X∼D0

{S(X) ≤ t} − Pr
X∼D1

{S(X) ≤ t}
)
.

Theorem 1. Given θ > 0, δ ∈ (0, 1), and a class of func-
tionsH from Rp to [−1, 1], the following holds with proba-
bility at least 1−δ: for all score functions S : Rp → [−1, 1]
obtained as convex combinations of the elements ofH,

AUC(S) ≤ ÂUCθ(S) +
4

θ
ζAUC(H) +

√
2 log(1/δ)

min{n0, n1}
,

where ζAUC(H) = Rmin{n0,n1},0(H)+Rmin{n0,n1},1(H).

In the particular case of ExactBoost, whereH is given by (5),
the theorem implies that the score S produced by the algo-
rithm satisfies AUC(S) ≤ ÂUCθ(S)+o(1) with high prob-
ability whenever min{n0, n1} � θ−2 log p. This result can
be extended to similar pairwise losses.

Theorem 2. Given θ > 0, δ ∈ (0, 1), and a class of func-
tionsH from Rp to [−1, 1], the following holds with proba-
bility at least 1−δ: for all score functions S : Rp → [−1, 1]
obtained as convex combinations of the elements ofH,

KS(S) ≤ K̂Sθ(S)+
8

θ
ζKS(H)+

√
log(2/δ)

2

(
1
√
n0

+
1
√
n1

)
,

where ζKS(H) = Rn0,0(H)+Rn1,1(H)+n
−1/2
0 +n

−1/2
1 .

In words, a score that achieves a small margin-adjusted KS
loss should, with high probability, have good performance
on the population. In the specific case of ExactBoost, the
theorem above yields with probability greater than 1− δ,

KS(S) ≤ K̂Sθ(S) + C

√
θ−2(1 + log p) + log(2/δ)

min{n0, n1}
,

with C > 0 a universal constant. Treating δ as fixed, good
training performance on the margin-adjusted loss leads to
good generalization when the number of positive and nega-
tive examples in the data are much larger than θ−2 log p.

Subsampling Subsampling can help ExactBoost avoid
overfitting. The next proposition is helpful in controlling its
impact in the optimization procedure for some losses.

Proposition 1. Let L̂ be either the K̂S or the ÂUC loss.
Consider a subset of indices I = I0 ∪ I1 ⊂ [n] chosen
independently and uniformly at random with equal number
of positive and negative cases, |I0| = |I1| = k. Let hR be
the optimal stump over the reduced sample {(Xj , yj)}j∈I
and score S and h∗ the optimal stump over the entire sample
{(Xi, yi)}i∈[n]. Then,

E[L̂(S + hR)] ≤ L̂(S + h∗) +
e

k
,

where the expectation is over the choice of I .

Hence, using random subsets of observations in ExactBoost
leads to an expected error close to optimal when the subset
has a balanced proportion of positive and negative examples.

Ensembling For some losses, it is possible to guarantee
that the empirical loss of the ensembler is smaller than the
empirical loss of each ensemble member. See the Supple-
mentary Material for a formal result.

4. Experiments
To test its performance, ExactBoost is compared against 10
exact and surrogate-based algorithms, both as a standalone
estimator and as an ensembler, on 30 heterogeneous datasets.
For ease of presentation, KS and AUC losses results of 6
representative datasets are shown in the main paper; the rest
are in the Supplementary Material. Table 1 displays the
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Figure 1. KS loss landscape highlighting ExactBoost’s optimiza-
tion trajectories on dataset heart via UMAP, going from left to
right. More runs E lead to better train and test losses.

Dataset Obs. Features Positives RankBoost DMKS

a1a 1605 119 24.6% 3.10x 34.50x
german 1000 20 70.0% 11.10x 2.00x
gisette 6000 5000 50.0% OOT 36.70x
gmsc 150000 10 6.7% OOT 87.50x
heart 303 21 45.9% 1.90x 23.70x
iono 351 34 64.1% 2.90x 4.70x
liver 145 5 37.9% 3.50x 17.40x

Table 1. Dataset properties and timings of algorithms relative to
ExactBoost. ExactBoost is always faster (> 1×). OOT indicates
the time budget of 5 days was exceeded (see the Supplementary
Material for details on computational setup and budget).

main characteristics of each dataset, which span various ap-
plications, and range from balanced to imbalanced. Sources
for the data can be found in the Supplementary Material.

Benchmarks ExactBoost is compared to many learning
algorithms: AdaBoost, k-nearest neighbors, logistic regres-
sion and random forest (via their Scikit-Learn implementa-
tion, (Pedregosa et al., 2011)), gradient boosting (via XG-
Boost, (Chen & Guestrin, 2016)) and a 4-layer connected
neural net (via TensorFlow, (Abadi et al., 2015)). Methods
that specifically optimize the performance metric are also
considered. For KS, the baseline is DMKS (Fang & Chen,
2019). For AUC, it is RankBoost (Freund et al., 2003).

Hyperparameters Hyperparameters were fixed through-
out the experiments. Baseline models were trained with
the package-provided hyperparameters; see the Supplemen-
tary Material. Aided by experimental evidence on held-out
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Figure 2. Test error for ExactBoost vs surrogate methods as es-
timators. Alternatives are generally worse than ExactBoost or
statistically indistinguishable.

AUC KS
Dataset ExactBoost RankBoost ExactBoost DMKS

a1a 0.11± 0.0 0.13± 0.0 0.37± 0.0 0.37± 0.0
german 0.23± 0.0 0.24± 0.0 0.53± 0.0 0.55± 0.0
gisette 0.01± 0.0 OOT 0.09± 0.0 0.06± 0.0
gmsc 0.21± 0.0 OOT 0.44± 0.0 0.45± 0.0
heart 0.09± 0.0 0.13± 0.0 0.30± 0.0 0.28± 0.0
iono 0.04± 0.0 0.04± 0.0 0.13± 0.0 0.28± 0.0
liver 0.22± 0.1 0.32± 0.1 0.45± 0.1 0.50± 0.1

Table 2. Evaluation of loss-specific optimizers. ExactBoost has the
best performance, it is faster and uses less memory.

Dataset ExactBoost AdaBoost Logistic XGBoost RankBoost
a1a 0.13± 0.0 0.17± 0.0 0.14± 0.0 0.28± 0.1 0.16± 0.0

german 0.23± 0.0 0.32± 0.0 0.24± 0.0 0.35± 0.0 0.30± 0.1
gisette 0.00± 0.0 0.01± 0.0 0.01± 0.0 0.02± 0.0 0.01± 0.0
gmsc 0.15± 0.0 0.14± 0.0 0.31± 0.0 0.41± 0.0 0.15± 0.0
heart 0.12± 0.0 0.18± 0.1 0.12± 0.0 0.23± 0.1 0.15± 0.0
iono. 0.04± 0.0 0.05± 0.0 0.07± 0.0 0.09± 0.0 0.05± 0.0
liver 0.30± 0.1 0.34± 0.1 0.34± 0.1 0.38± 0.0 0.38± 0.1

Table 3. Evaluation of AUC ensemblers. ExactBoost is generally
the top performer. The full table is in the Supplementary Material.

Dataset ExactBoost AdaBoost Logistic XGBoost DMKS
a1a 0.37± 0.1 0.44± 0.1 0.40± 0.1 0.57± 0.1 0.49± 0.1

german 0.50± 0.1 0.68± 0.1 0.53± 0.1 0.69± 0.1 0.53± 0.1
gisette 0.04± 0.0 0.04± 0.0 0.07± 0.0 0.04± 0.0 0.10± 0.0
gmsc 0.43± 0.0 0.44± 0.0 0.73± 0.0 0.83± 0.0 0.46± 0.0
heart 0.34± 0.1 0.38± 0.1 0.37± 0.1 0.46± 0.1 0.40± 0.0
iono. 0.13± 0.1 0.18± 0.1 0.18± 0.1 0.19± 0.1 0.27± 0.1
liver 0.53± 0.1 0.60± 0.2 0.59± 0.2 0.76± 0.0 0.60± 0.2

Table 4. Evaluation of KS ensemblers. ExactBoost is always the
top performer. The full table is in the Supplementary Material.

datasets, ExactBoost uses E = 250 runs, T = 50 rounds,
subsampling of 20% and margin of θ = 0.05. See Figure 1.

Results ExactBoost is generally better than loss-specific
optimizers, as illustrated in Table 2. Table 1 includes some
timing comparisons showing that ExactBoost scales well
even to large datasets, while Figure 2 shows that ExactBoost
also has good performance against surrogate alternatives.
Full results are included the Supplementary Material.

Ensembling ExactBoost is also a great ensembler. Six
base models were used: AdaBoost, k-nearest neighbors,
logistic regression, neural network, random forest and XG-
Boost. These models were trained on training folds, and
their predictions on test folds were used as features for the
ensemble models. Tables 3 and 4 show the results of using
different surrogate and exact models as ensemblers. The
surrogate ensemblers were AdaBoost, logistic regression
and XGBoost, while the exact benchmarks were given by
RankBoost (for AUC) and DMKS (for KS).

As shown in Tables 3 and 4, ExactBoost is generally the
best ensembler available. In fact, it is also robust to noisy
features coming from poorly performing base models. This
is particularly attractive because, given the discrete nature
of combinatorial losses, it is often the case that the best
performing optimizer changes from dataset to dataset.
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