ExactBoost: Directly Boosting the Margin in Combinatorial and Non-decomposable Metrics

Daniel Csillag^{*}, Carolina Piazza[†], Thiago Ramos^{*}, João Vitor Romano^{*}, Roberto Oliveira^{*}, Paulo Orenstein^{*} ^{*} Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil, [†] Princeton University, Princeton, USA

Summary

Combinatorial and non-decomposable losses pose computational and theoretical challenges, with many classification algorithms resorting to surrogates. In this work, we:

- introduce a fast and exact stagewise optimization algorithm, dubbed ExactBoost, that boosts stumps to the actual loss function;
- develop a novel extension of margin theory to the non-decomposable setting, recovering a guarantee previously available only to decomposable losses (Bartlett et al. 1998; Koltchinskii and Panchenko 2002; Schapire and Freund 2013);
- bound the generalization error of ExactBoost for metrics with different levels of nondecomposability, e.g. area under the ROC curve (AUC) and Kolmogorov-Smirnov (KS);
- empirically evaluate ExactBoost's performance against surrogate-based and exact algorithms available, showing it is generally superior, especially as an ensembler.

Overview of ExactBoost

The main idea behind ExactBoost is stagewise optimization tailored to a margin-adjusted empirical loss. Take $(X_1, y_1), \ldots, (X_n, y_n) \stackrel{\text{iid}}{\sim} \mathcal{D}$ and a loss \hat{L} that is invariant under rescaling and translation in its first argument. The goal is to find a score function where higher scores $S(X_i)$ should indicate higher likelihood of $y_i = 1$. It will be assumed that, after T rounds, a score has the form $S(X_i) = \sum_{t=1}^{T} w_t h_t(X_i)$, with $w_t \ge 0$, $\sum_{t=1}^{T} w_t = 1$, $h_t \in \mathcal{H}$, and the set of weak learners \mathcal{H} are binary stumps of the form

$$\mathcal{H} = \left\{ \pm \mathbf{1}_{[X_{(j)} \le \xi]} \pm \mathbf{1}_{[X_{(j)} > \xi]} : \xi \in \mathbb{R}, j \in [p] \right\}.$$
 (1)

In order to attenuate overfitting, we consider the margin-adjusted loss $\widehat{L}_{\theta}(\mathbf{S}, \mathbf{y}) = \widehat{L}(\mathbf{S} - \theta \mathbf{y}, \mathbf{y})$, where $\theta > 0$ is a margin parameter.

The method works by picking (ξ_t, j_t, a_t, b_t) that solves

$$\min_{\boldsymbol{\xi}\in\mathbb{R},j\in[p],\tilde{a},\tilde{b}\in\mathbb{R}}\widehat{L}\left(\mathbf{S}_{t-1}+\tilde{a}\mathbf{1}_{[X_{(j)}\leq\boldsymbol{\xi}]}+\tilde{b}\mathbf{1}_{[X_{(j)}>\boldsymbol{\xi}]}-(1+|\tilde{b}-\tilde{a}|/2)\theta\mathbf{y},\mathbf{y}\right),$$
(2)

and setting $\mathbf{S}_t = \mathbf{S}_{t-1} + a_t \mathbf{1}_{[X_{(j_t)} \le \xi_t]} + b_t \mathbf{1}_{[X_{(j_t)} > \xi_t]}$.

The resulting algorithm is called ExactBoost, as it is based on the exact loss function provided rather than a surrogate. Note it takes as input an initial set of scores which could be any starting point, including scores trained by other learning models.

Algorithm 1: ExactBoost	Algorithm 2: Iterative Minimization
function ExactBoost(data (\mathbf{X}, \mathbf{y}), initial scores S_0 ,	function Min(loss \hat{L}_{θ} , data $\mathbf{X}_{(j)}$, labels \mathbf{y} , scores S ,
margin θ , iterations T , estimator runs E)	margin θ)
for $e \in \{1,, E\}$ do	$\Xi \leftarrow [\min \mathbf{X}_{(j)}, \max \mathbf{X}_{(j)}]; A \leftarrow [-1, 1]; B \leftarrow [-1, 1]$
$S_e \leftarrow S_0$	for $k \in \{1,, c\}$ do
for $t \in \{1, \ldots, T\}$ do	$l_{\star} \leftarrow +\infty$
\mathbf{X}^{s} , \mathbf{y}^{s} \leftarrow subsample \mathbf{X} , \mathbf{y}	for bisections ($\Xi^{(b)}$, $A^{(b)}$, $B^{(b)}$) do
for $j \in \{1,, p\}$ do	for $i \in \{1,, n\}$ do
$\widehat{L}(h) \leftarrow \widehat{L}_{ heta}(S_e(\mathbf{X}^s_{(j)}) + h(\mathbf{X}^s_{(j)}), \mathbf{y}^s)$	$s \leftarrow S + A^{(b)} 1_{[\mathbf{X}_{(j)} \leq \Xi^{(b)}]} + B^{(b)} 1_{[\mathbf{X}_{(j)} > \Xi^{(b)}]}$
$h_j \leftarrow \operatorname{argmin}_h \widehat{L}(h) > \operatorname{Algorithm} 2$	$\mathbf{s}_i \leftarrow \underline{s}$ if $y_i = 0$ otherwise \overline{s}
end for	end for
$h \leftarrow \operatorname{argmin}_{h_i} \widehat{L}_{\theta}(S_e(\mathbf{X}^s) + h_j(\mathbf{X}^s), \mathbf{y}^s)$	if $\widehat{L}_{ heta}(\mathbf{s},\mathbf{y}) < l_{\star}$ then
$S'_e \leftarrow S_e + \dot{h}$	$I_{\star} \leftarrow \widehat{L}_{\theta}(\mathbf{s}, \mathbf{y}); \Xi_{\star} \leftarrow \Xi^{(b)}; A_{\star} \leftarrow A^{(b)}; B_{\star} \leftarrow B^{(b)}$
if $\widehat{L}_{ heta}(S'_e(\mathbf{X}),\mathbf{y}) \leq \widehat{L}_{ heta}(S_e(\mathbf{X}),\mathbf{y})$ then	end if
$S_e \leftarrow S'_e$	end for
$S_e \leftarrow (S_e - \min S_e) / (\max S_e - \min S_e)$	end for
end if	$I_{\underline{=}} \leftarrow \{\underline{\underline{=}_{\star}}, \overline{\underline{=}_{\star}}\}; I_{A} \leftarrow \{\underline{A_{\star}}, \overline{A_{\star}}\}; I_{B} \leftarrow \{\underline{B_{\star}}, \overline{B_{\star}}\}$
end for	$S(a, b, \xi) \leftarrow S + a 1_{[\mathbf{X}_{(j)} \leq \xi]} + b 1_{[\mathbf{X}_{(j)} > \xi]}$
end for	$(\xi_{\star}, a_{\star}, b_{\star}) \leftarrow \operatorname{argmin}_{\xi \in I_{\Xi}, a \in I_{A}, b \in I_{B}} \widehat{L}_{\theta}(S(a, b, \xi), \mathbf{y})$
return mean (S_1, \ldots, S_E)	$\operatorname{return} S + a_{\star} 1_{[\mathbf{X}_{(j)} \leq \xi_{\star}]} + b_{\star} 1_{[\mathbf{X}_{(j)} > \xi_{\star}]}$

Theoretical Results

Notation Let \mathcal{D} be a probability distribution over $(X, y) \in \mathbb{R}^p \times \{0, 1\}$, and \mathcal{D}_0 (respectively, \mathcal{D}_1) denote the conditional distribution of X when y = 0 (respectively, 1). Conditionally on n_1 and n_0 respectively, the subsamples $\mathbf{X}_1 := (X_i : i \in [n], y_i = 1)$ and $\mathbf{X}_0 := (X_i : i \in [n], y_i = 0)$ are iid from \mathcal{D}_1 and \mathcal{D}_0 . Score functions $S : \mathbb{R}^p \to [-1, 1]$ are convex combinations of elements in a family of measurable functions $\mathcal{H} : \mathbb{R}^p \to [-1, 1]$. Denote by $\mathcal{R}_n(\mathcal{H})$ the Rademacher complexity \mathcal{H} with respect to \mathcal{D} and $\mathcal{R}_{n,y}(\mathcal{H})$ for $y \in \{0, 1\}$ the complexities with respect to \mathcal{D}_0 and \mathcal{D}_1 . Note $\mathcal{R}_n(\mathcal{H}) = O(\sqrt{\log p/n})$ when the set of weak learners \mathcal{H} is as in (1).

Define the populational AUC and the populational KS losses as

$$\mathsf{AUC}(S) \coloneqq 1 - \Pr\{S(X) > S(X')\},$$
$$\mathsf{KS}(S) \coloneqq 1 - \sup_{t \in \mathbb{R}} \left(\Pr_{X \sim \mathcal{D}_0} \{S(X) \le t\} - \Pr_{X \sim \mathcal{D}_1} \{S(X) \le t\} \right).$$

Theorem 1. Given $\theta > 0$, $\delta \in (0, 1)$, and a class of functions \mathcal{H} from \mathbb{R}^p to [-1, 1], the following holds with probability at least $1 - \delta$: for all score functions $S : \mathbb{R}^p \to [-1, 1]$ obtained as convex combinations of the elements of \mathcal{H} ,

$$AUC(S) \leq \widehat{AUC}_{\theta}(S) + \frac{4}{\theta} \zeta_{AUC}(\mathcal{H}) + \sqrt{\frac{2\log(1/\delta)}{\min\{n_0, n_1\}}},$$

where $\zeta_{AUC}(\mathcal{H}) = \mathcal{R}_{\min\{n_0, n_1\}, 0}(\mathcal{H}) + \mathcal{R}_{\min\{n_0, n_1\}, 1}(\mathcal{H}).$

For ExactBoost, where \mathcal{H} is given by (1), the theorem implies that the score S produced by the algorithm satisfies $AUC(S) \leq AUC_{\theta}(S) + o(1)$ with high probability whenever $\min\{n_0, n_1\} \gg \theta^{-2} \log p$. This result can be extended to similar pairwise losses.

Theorem 2. Given $\theta > 0$, $\delta \in (0, 1)$, and a class of functions \mathcal{H} from \mathbb{R}^p to [-1, 1], the following holds with probability at least $1 - \delta$: for all score functions $S : \mathbb{R}^p \to [-1, 1]$ obtained as convex combinations of the elements of \mathcal{H} ,

$$\mathsf{KS}(S) \le \widehat{\mathsf{KS}}_{\theta}(S) + \frac{8}{\theta} \zeta_{\mathsf{KS}}(\mathcal{H}) + \sqrt{\frac{\log(2/\delta)}{2}} \left(\frac{1}{\sqrt{n_0}} + \frac{1}{\sqrt{n_1}}\right),$$

where $\zeta_{\text{KS}}(\mathcal{H}) = \mathcal{R}_{n_0,0}(\mathcal{H}) + \mathcal{R}_{n_1,1}(\mathcal{H}) + n_0^{-1/2} + n_1^{-1/2}$.

In words, a score that achieves a small margin-adjusted KS loss should, with high probability, have good performance on the population. In the specific case of ExactBoost, the theorem above yields with probability greater than $1 - \delta$,

$$\mathsf{KS}(S) \leq \widehat{\mathsf{KS}}_{\theta}(S) + C \sqrt{\frac{\theta^{-2}(1 + \log p) + \log(2/\delta)}{\min\{n_0, n_1\}}},$$

with C > 0 a universal constant. Treating δ as fixed, good training performance on the margin-adjusted loss leads to good generalization when the number of positive and negative examples in the data are much larger than $\theta^{-2} \log p$.

Subsampling Subsampling can help ExactBoost avoid overfitting. The next proposition is helpful in controlling its impact in the optimization procedure for some losses.

Proposition 1. Let \widehat{L} be either the \widehat{AUC} or the \widehat{KS} loss. Consider a subset of indices $I = I_0 \cup I_1 \subset [n]$ chosen independently and uniformly at random with equal number of positive and negative cases, $|I_0| = |I_1| = k$. Let h_R be the optimal stump over the reduced sample $\{(X_j, y_j)\}_{j \in I}$ and score S and h_* the optimal stump over the entire sample $\{(X_i, y_i)\}_{i \in [n]}$. Then,

$$\mathbb{E}[\widehat{L}(S+h_R)] \leq \widehat{L}(S+h_*) + \frac{e}{k},$$

where the expectation is over the choice of I.

Using random subsets of observations in ExactBoost leads to an expected error close to optimal when the subset has a balanced proportion of positive and negative examples.

Experiments

Benchmarks ExactBoost is compared to many learning algorithms: AdaBoost, k-nearest neighbors, logistic regression and random forest (via their Scikit-Learn implementation), gradient boosting (via XGBoost) and a 4-layer neural net (via TensorFlow). Methods that specifically optimize the performance metric are also considered: RankBoost (Freund et al. 2003) for AUC and DMKS (Fang and Chen 2019) for KS.

Hyperparameters Hyperparameters were fixed throughout the experiments. Baseline models were trained with the package-provided hyperparameters. Aided by experimental evidence on held-out datasets, ExactBoost uses E = 250 runs, T = 50 rounds, subsampling of 20% and margin of $\theta = 0.05$.

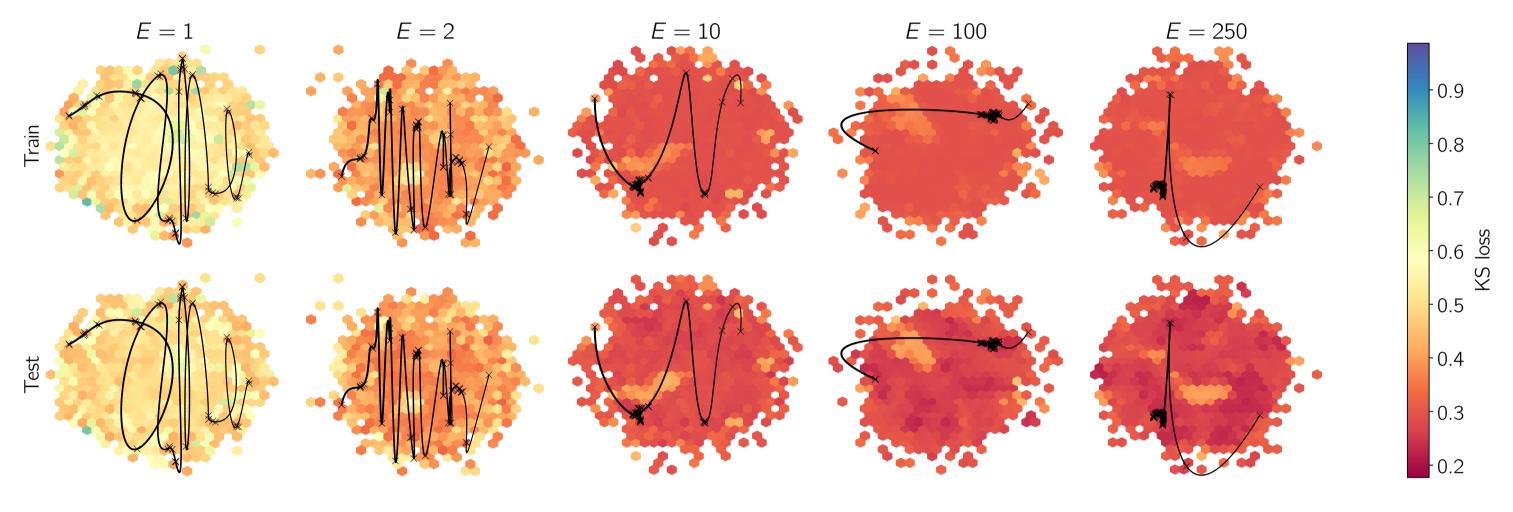


Fig 1: KS loss landscape highlighting ExactBoost's optimization trajectories on dataset heart via UMAP, going from left to right. More runs *E* lead to better train and test losses.

Datasets and timings Table 1 displays the main characteristics of each dataset, which span various applications, and range from balanced to imbalanced. Timing comparisons against exact benchmarks are also provided.

Dataset	Observations	Features	9 Positives	RankBoost DMKS
ala	1605	119	24.6%	55.90x 102.78x
german	1000	20	70.0%	23.98x 1.28x
gisette	6000	5000	50.0%	OOT 55.68x
gmsc	150000	10	6.7%	OOT 22.89x
heart	303	21	45.9%	3.32x 19.00x
ionosphere	351	34	64.1%	3.97x 3.48x
liver-disorders	145	5	37.9%	1.91x 6.36x

Table 1: Dataset properties and timings of algorithms relative to ExactBoost. ExactBoost is always faster (> 1×). OOT indicates the time budget of 5 days was exceeded (see the paper for details on computational setup).

Results Figure 2 shows that ExactBoost has good performance against surrogate alternatives. Results in the paper show that ExactBoost is also generally better as a standalone estimator than loss-specific optimizers such as RankBoost and DMKS.

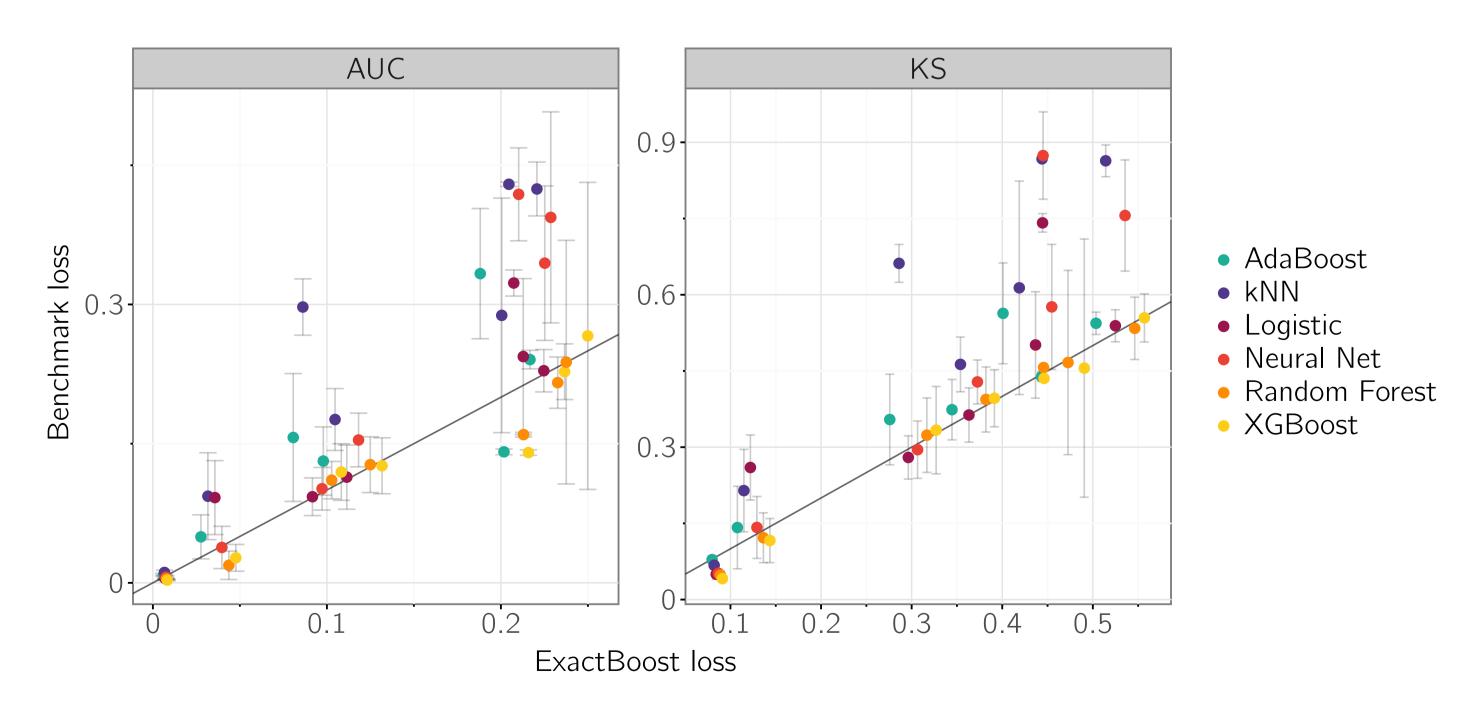


Fig 2: Test error for ExactBoost vs surrogate methods as estimators. Alternatives are generally worse than ExactBoost or statistically indistinguishable.

Ensembling ExactBoost is also a great ensembler. Six base models were used: AdaBoost, k-nearest neighbors, logistic regression, neural network, random forest and XG-Boost. These models were trained on training folds, and their predictions on test folds were used as features for the ensemble models. Tables 2 and 3 show the results of using different surrogate and exact models as ensemblers.

Dataset	ExactBoost	AdaBoost	Logistic	XGBoost	RankBoost
ala	0.13 ± 0.0	0.17 ± 0.0	0.14 ± 0.0	0.28 ± 0.1	0.16 ± 0.0
german	0.23 ± 0.0	0.32 ± 0.0	0.24 ± 0.0	0.35 ± 0.0	0.30 ± 0.1
gisette	0.00 ± 0.0	0.01 ± 0.0	0.01 ± 0.0	0.02 ± 0.0	0.01 ± 0.0
gmsc	0.15 ± 0.0	0.14 ± 0.0	0.31 ± 0.0	0.41 ± 0.0	0.15 ± 0.0
heart	0.12 ± 0.0	0.18 ± 0.1	0.12 ± 0.0	0.23 ± 0.1	0.15 ± 0.0
iono	0.04 ± 0.0	0.05 ± 0.0	0.07 ± 0.0	0.09 ± 0.0	0.05 ± 0.0
liver	0.30 ± 0.1	0.34 ± 0.1	0.34 ± 0.1	0.38 ± 0.0	0.38 ± 0.1

Table 2: Evaluation of AUC ensemblers. ExactBoost is generally the top performer.

Dataset	ExactBoost	AdaBoost	Logistic	XGBoost	DMKS
ala	0.37 ± 0.1	0.44 ± 0.1	0.40 ± 0.1	0.57 ± 0.1	0.49 ± 0.1
german	0.50 ± 0.1	0.68 ± 0.1	0.53 ± 0.1	0.69 ± 0.1	0.53 ± 0.1
gisette	0.04 ± 0.0	0.04 ± 0.0	0.07 ± 0.0	0.04 ± 0.0	0.10 ± 0.0
gmsc	0.43 ± 0.0	0.44 ± 0.0	0.73 ± 0.0	0.83 ± 0.0	0.46 ± 0.0
heart	0.34 ± 0.1	0.38 ± 0.1	0.37 ± 0.1	0.46 ± 0.1	0.40 ± 0.0
iono	0.13 ± 0.1	0.18 ± 0.1	0.18 ± 0.1	0.19 ± 0.1	0.27 ± 0.1
liver	0.53 ± 0.1	0.60 ± 0.2	0.59 ± 0.2	0.76 ± 0.0	0.60 ± 0.2

Table 3: Evaluation of KS ensemblers. ExactBoost is always the top performer.

Takeaways

The main takeaways from the proposed boosting algorithm are:

- first-order surrogate methods are widely used in classification tasks, but there is value to be gained in working with the intended loss function;
- ExactBoost's theoretical guarantees translate to compelling empirical performance;
- computational implementations can be made reasonably fast through interval arithmetic;
- we expect the margin extension and theoretical results presented to hold over more general classes of combinatorial and non-decomposable losses beyond AUC and KS (see the main paper for the precision at k loss).

Main References

Bartlett, Peter et al. (1998). "Boosting the margin: a new explanation for the effectiveness of voting methods". In: *Annals of Statistics* 26.5, pp. 1651–1686.

Fang, Fang and Yuanyuan Chen (2019). "A new approach for credit scoring by directly maximizing the Kolmogorov–Smirnov statistic". In: *Computational Statistics & Data Analysis* 133, pp. 180–194. ISSN: 0167-9473.

Freund, Yoav et al. (Dec. 2003). "An Efficient Boosting Algorithm for Combining Preferences". In: *J. Mach. Learn. Res.* 4, pp. 933–969. ISSN: 1532-4435.

Koltchinskii, V. and D. Panchenko (Feb. 2002). "Empirical Margin Distributions and Bounding the Generalization Error of Combined Classifiers". In: *Annals of Statistics* 30.1, pp. 1– 50. DOI: 10.1214/aos/1015362183.

Schapire, Robert E and Yoav Freund (2013). "Boosting: Foundations and algorithms". In: *Kybernetes*. DOI: 10.1108/03684921311295547.