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Abstract

Many classification algorithms require the use
of surrogate losses when the intended loss func-
tion is combinatorial or non-decomposable.
This paper introduces a fast and exact stage-
wise optimization algorithm, dubbed Exact-
Boost, that boosts instead to the actual loss
function. By developing a novel extension
of margin theory to the non-decomposable
setting, it is possible to provably bound the
generalization error of ExactBoost for many
important metrics with different levels of non-
decomposability. Through extensive exam-
ples, it is shown that such theoretical guar-
antees translate to competitive empirical per-
formance. In particular, when used as an
ensembler, ExactBoost is able to significantly
outperform other surrogate-based and exact
algorithms available.

1 INTRODUCTION

Several challenging classification tasks involve combina-
torial and non-decomposable loss functions (Kar et al.,
2014; Gao et al., 2019). A combinatorial metric is
one that is computed in terms of indicator functions,
while non-decomposable metrics are those that cannot
be reduced to a sum of loss functions on each sample
point. Since such losses are neither differentiable nor
parallelizable, common approaches based on convex op-
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timization or stochastic gradient descent are not readily
applicable without resorting to surrogate losses.

Many popular metrics are of this nature. The area un-
der the ROC curve (AUC) is a prime example. Other
examples include the Kolmogorov-Smirnov (KS), widely
used in the credit industry, and precision at k (P@k),
which is usually applied to ranking problems. Gener-
ally, the data comes as independent and identically dis-
tributed (iid) points (Xi, yi)

n
i=1, with features Xi ∈ Rp

and binary labels yi ∈ {0, 1}, and the goal is to devise
algorithms that learn score functions (or classifiers)
S : Rp → [−1, 1] that correctly distinguish between the
two label classes. Let n0 and n1 denote the number of
labels in each class. These loss functions can be written

ÂUC(S, y) = 1− 1

n1

∑
yi=1

1

n0

∑
yj=0

1[S(Xi)>S(Xj)], (1)

K̂S(S, y) = 1−max
t∈R

n∑
i=1

ρi1[S(Xi)≤t], (2)

P̂@k(S, y) = 1− 1

n

n∑
i=1

yi1[i∈Mk], (3)

where ρi = 1/n0 if yi = 0 and ρi = −1/n1 if yi = 1,
andMk denotes the set of indices i = 1, . . . , n achiev-
ing the highest k scores. These three examples display
different levels of non-decomposability: AUC relies on
pairwise interactions, KS has a global threshold chosen
optimally, and P@k also has a global threshold but with
no optimality structure. Many other popular loss func-
tions belong to the combinatorial or non-decomposable
classes, including F-score and partial AUC.

Boosting is a leading technique to deal with classi-
fication problems, though it usually requires the de-
velopment of surrogate losses for combinatorial and
non-decomposable metrics. Still, not using the exact
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metric of interest often incurs in performance degra-
dation, and the development of surrogate losses with
optimality guarantees typically require significant work.

This paper considers, instead, a novel approach that
works more generally for losses such as (1), (2) and (3).
The procedure, dubbed ExactBoost, is a stagewise op-
timization algorithm tailored to the exact loss function
with a margin condition. While margin theory is readily
applicable in the decomposable setting, a novel exten-
sion is developed here for non-decomposable losses,
yielding provable finite-sample performance guaran-
tees. Given labels y = (y1, . . . , yn), initial scores
S0 = (S0(X1), . . . , S0(Xn)), and empirical loss func-
tion L̂ : [−1, 1]n × {0, 1}n → R, ExactBoost solves, at
iteration t = 1, . . . , T ,

(αt,ht) = argmin
α,h

L̂θ(St−1 + αh,y), (4)

and sets St = St−1 + αtht, where h : Rp → R is a
base learner (e.g., a stump), h = (h(X1), . . . , h(Xn)),
α ≥ 0 is its corresponding weight, and, crucially, L̂θ is
a margin-adjusted version of the empirical loss L̂. The
combinatorial nature of the losses allows each boosting
iteration to be solved relatively quickly. By employing
interval arithmetic, ExactBoost is of order O(pn log n).

While ExactBoost is a competitive standalone estima-
tor, its performance is even better as an ensembler. Us-
ing surrogate-based algorithms’ predictions as features
for ExactBoost allows it to combine them specifically
for the chosen loss function, extracting the remaining
signal tailored to the loss, akin to transfer learning.

The main contributions of this work are:

• developing an extension of margin theory for com-
binatorial and non-decomposable losses;

• showing that ExactBoost, a fast margin-adjusted
exact stagewise optimization algorithm, has prov-
able optimality bounds on its performance;

• showing that its empirical performance is com-
parable or superior to general-purpose and other
loss-specific algorithms available in the literature;

• demonstrating that, as an ensembler, ExactBoost
significantly outperforms other ensembling meth-
ods based on surrogate and exact losses.

Related Work. Boosting algorithms for combina-
torial and non-decomposable losses (Kar et al., 2014;
Gao et al., 2019) typically employ surrogate metrics,
as is the case with Gradient Boosting (Friedman, 2001)
and AdaBoost (Freund and Schapire, 1997). Both use
approximations of the loss that lead to fast algorithms
that are generally sensitive to misclassification error

(Bartlett et al., 2006). Still, some loss in performance
may follow from not using the exact metric of interest
(Cortes and Mohri, 2003; Fathony and Kolter, 2020).
Recently, there have been efforts to find better sur-
rogates to popular combinatorial losses (Ferri et al.,
2002; Joachims, 2005; Boyd et al., 2012; Agarwal, 2013;
Kar et al., 2014; Lyu and Ying, 2018; Tasche, 2018;
Engilberge et al., 2019; Pfetsch and Pokutta, 2020;
Grabocka et al., 2020; Jiang et al., 2020; Adam et al.,
2020), trading off speed for a more accurate loss func-
tion. There has also been interest in developing heavily
constrained approaches that use the exact loss function
(Li et al., 2014; Fang and Chen, 2019). ExactBoost,
instead, relies on a novel and general extension of the
margin theory for non-decomposable losses (Zhai et al.,
2013; Schapire and Freund, 2013) to obtain empirical
error bounds, such as in Schapire et al. (1998); Bartlett
and Mendelson (2002); Koltchinskii and Panchenko
(2002), not previously available in this setting.

Organization. Section 2 introduces the ExactBoost
algorithm. Section 3 collects theoretical guarantees
about ExactBoost for representative losses, both as a
standalone classifier and as an ensembler. Section 4
displays the performance of the algorithms on different
datasets and compares it to the performance of tradi-
tional classifiers and loss-specific optimizers. Finally,
Section 5 concludes the paper.

2 OVERVIEW OF EXACTBOOST

Consider data (X1, y1), . . . , (Xn, yn) ∼ D indepen-
dently, with Xi ∈ Rp features and yi ∈ {0, 1} labels,
and an empirical loss L̂ : [−1, 1]n×{0, 1}n → [0, 1] that
is invariant under rescaling and translation in its first
argument, such as (1), (2) and (3). The goal is to find
a score function S : Rp → [−1, 1] where higher scores
S(Xi) indicate higher likelihood of yi = 1. It will be
assumed that, after t rounds, a score has the form

St(Xi) =

t∑
r=1

wrhr(Xi), (5)

with wr ≥ 0,
∑t
r=1 wr = 1 and hr ∈ H, where H

is a set of base learners. For stagewise minimiza-
tion of the empirical loss, one solves (αt+1,ht+1) =

argminα≥0,h∈H L̂(St + αh,y) and updates the score
via St+1 = (St + αt+1ht+1)/(1 + αt+1), where the de-
nominator ensures the weights sum to one, as in (5).

This approach produces competitive results on test data
in many settings. However, to attenuate overfitting
with combinatorial and non-decomposable losses, a
margin-adjusted loss L̂θ is justified. Consider

L̂θ(S,y) = L̂(S− θy,y), (6)
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where θ > 0 is a margin parameter (though the P@k
case is slightly more subtle, see Theorem 3). That way,
scores for positive labels are artificially decreased, forc-
ing the algorithm to increase the confidence when cor-
rectly classifying samples (since losses are translation-
invariant, this is equivalent to imposing high confidence
on negative cases). This simple adjustment is crucial
to provide optimality bounds on the generalization
performance of the resulting algorithm (see Section 3).

Now, consider the optimization program (4). While
ExactBoost and its guarantees hold for general sets of
base learners H, in practice learners beyond stumps
(e.g., trees of higher depths) do not yield significant
improvements and can be much more costly computa-
tionally. Thus, take H to be the set of stumps:

H =
{
±1[X(j)≤ξ] ± 1[X(j)>ξ] : ξ ∈ R, j ∈ [p]

}
, (7)

with X(j) denoting the jth feature of X.

Since the losses are invariant under rescaling and trans-
lation of the first argument, ExactBoost must pick

(αt,ht) = argmin
α,h

L̂θ

(
1

1 + α
St−1 +

α

1 + α
h,y

)
= argmin

α,h
L̂ (St−1 − θy + α(h− θy),y) .

Let h̃(X) = ã1[X(j)≤ξ] + b̃1[X(j)>ξ] − (|b̃ − ã|/2)θy, a
function parametrized by ã, b̃, ξ ∈ R and j ∈ [p]. Note

h̃(X)− ã+ b̃

2
=
|b̃− ã|

2

(
±1[X(j)≤ξ] ± 1[X(j)>ξ] − θy

)
= α(a1[X(j)≤ξ] + b1[X(j)>ξ] − θy)

= α(h(X)− θy),

where a, b ∈ {−1, 1} and α ≥ 0. Thus, the program (4)
is iteratively solved by picking (ξt, jt, at, bt) via

min
ξ∈R,j∈[p],ã,b̃∈R

L̂
(
St−1 + ã1[X(j)≤ξ] + b̃1[X(j)>ξ] (8)

−
(

1 + (|b̃− ã|)/2
)
θy,y

)
,

then setting St = St−1 + at1[X(jt)
≤ξt] + bt1[X(jt)

>ξt].
Note the discrete nature of combinatorial loss functions
allows (8) to be solved by only considering a finite set
of ξ, ã and b̃: for ξ, it suffices to look at the unique
values of feature X(j) for j = 1, . . . , p, and for a and
b the unique values of S(Xi), for i = 1, . . . , n. Other
values of ξ, a and b do not yield different training losses.

The resulting algorithm is called ExactBoost, as it is
based on the exact loss function provided rather than
a surrogate loss. To avoid overfitting, subsampling is
used (see Subsection 3.4 for theoretical guarantees).
Finally, randomized runs of the algorithm are averaged,

similar in spirit to random forests, and can be trivially
parallelized. Algorithm 1 includes the full pseudocode.
It takes as input an initial set of scores, which could for
instance be scores trained by other learning models.

Algorithm 1 ExactBoost
function ExactBoost(data (X,y), initial scores S0,
margin θ, iterations T , estimator runs E)
for e ∈ {1, . . . , E} do
Se ← S0

for t ∈ {1, . . . , T} do
Xs,ys ← subsample X,y
for j ∈ {1, . . . , p} do
L̂(h)← L̂θ(Se(X

s
(j)) + h(Xs

(j)),y
s)

hj ← argminhL̂(h) . Algorithm 2
end for
h← argminhj L̂θ(Se(X

s) + hj(X
s),ys)

S′e ← Se + h

if L̂θ(S′e(X),y) ≤ L̂θ(Se(X),y) then
Se ← S′e
Se ← (Se −minSe)/(maxSe −minSe)

end if
end for

end for
return mean(S1, . . . , SE)

end function

Algorithm 2 Iterative Minimization
function Minimize(loss L̂θ, data X(j), labels y, scores
S, margin θ)
Ξ← [minX(j),maxX(j)]
A← [−1, 1]; B ← [−1, 1]
for k ∈ {1, . . . , c} do
l? ← +∞
for bisections (Ξ(b), A(b), B(b)) do
for i ∈ {1, . . . , n} do
s← S +A(b)1[X(j)≤Ξ(b)] +B(b)1[X(j)>Ξ(b)]

si ← s if yi = 0 otherwise s
end for
if L̂θ(s,y) < l? then
l? ← L̂θ(s,y)

Ξ? ← Ξ(b);A? ← A(b);B? ← B(b)

end if
end for

end for
IΞ ← {Ξ?,Ξ?}; IA ← {A?, A?}; IB ← {B?, B?}
S(a, b, ξ)← S + a1[X(j)≤ξ] + b1[X(j)>ξ]

(ξ?, a?, b?)← argmin
ξ∈IΞ,a∈IA,b∈IB

L̂θ(S(a, b, ξ),y)

return S + a?1[X(j)≤ξ?] + b?1[X(j)>ξ?]

end function

In order to efficiently solve (8), we use an interval
arithmetic (IA)-based algorithm: We use the usual
IA notations and operations, see Hickey et al. (2001);
e.g., Z = [Z,Z] is an interval, F (Z) = [F (Z), F (Z)]
means F (Z) is the lower bound for the interval F (Z),
and U + V = [U,U ] + [V , V ] = [U + V ,U + V ]. Let
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� denote elementwise multiplication. The optimiza-
tion algorithm, whose pseudocode is presented in Al-
gorithm 2, takes the form of a bisection-like iterative
procedure: we first assign intervals A, B and Ξ as
the search domain, and then, c times, we halve them
as follows: for each possible way to halve A, B and
Ξ, compute the IA lower bound in the subinterval,
L̂(S′(A(b), B(b),Ξ(b)),y) = L̂(y � S′(A(b), B(b),Ξ(b)) +

(1 − y) � S′(A(b), B(b),Ξ(b)),y) (this follows directly
from the IA definitions applied to our losses), and pick
the one with the lowest IA lower bound as the new
search domain. Since each step halves the search do-
main and gives an extra bit of numerical precision, c is
fixed as the precision of the floating-point type. The
Supplementary Material includes more details.

By using Algorithm 2 to solve (8), ExactBoost has a
runtime complexity of order O(pn log(n)) and a space
complexity of order O(n). Thus, it can scale well even
to large datasets, as shown in Section 4.

3 THEORETICAL RESULTS

This section develops a theory of generalization for
ExactBoost under margin-type conditions. It shows, in
particular, that the population error of an ExactBoost’s
score S can be upper bounded by the sum of a margin-
adjusted sample error of S plus an error depending on
H. Crucially, the latter is controlled uniformly over S
and only depends on the class of functions H. Thus,
if a method has a margin-adjusted training loss that
is sufficiently small relative to θ, then it generalizates
well. When H is the set of stumps (7), for example,
one can allow for a number of features that is nearly as
large as an exponential in the number of positive and
negative examples.

The theoretical results are based on the representative
losses (1), (2) and (3), which display different levels of
non-decomposability. While this affects the guarantees
for each loss slightly differently, the proof techniques
allow for generalization to other non-decomposable
losses, as pointed out below. Importantly, the margin
adjustment on each loss is essentially the same.

The results below extend to non-decomposable losses
previous work in obtaining empirical bounds for clas-
sification tasks (Schapire et al., 1998; Bartlett and
Mendelson, 2002; Koltchinskii and Panchenko, 2002).
The results presented here differ in spirit from those
obtained via surrogate losses (Agarwal, 2013; Kar et al.,
2015). Surrogate metrics can provide upper bounds of
the desired loss but often lack a natural quantitative
interpretation. The theorems below, on the other hand,
show that minimizing a margin-adjusted empirical loss
leads, with high probability, to a small population loss.

Notation. Assume D is a probability distribution over
pairs (X, y) ∈ Rp×{0, 1}, and let D0 (respectively, D1)
denote the conditional distribution of X when y = 0
(respectively, 1). When unambiguous, D might also
denote the marginal distribution of X. The data is
(Xi, yi)

n
i=1 ∼ D iid, and, conditionally on the number

n1 of indices i with yi = 1 (and also defining n0 :=
n − n1), the subsamples X1 := (Xi : i ∈ [n], yi = 1)
and X0 := (Xi : i ∈ [n], yi = 0) are iid from D1 and
D0. Score functions S : Rp → [−1, 1] are convex combi-
nations of elements in a family of measurable functions
H : Rp → [−1, 1]. Let {σi}ni=1 be iid uniform over ±1
and independent from data. Define the Rademacher
complexities of H with respect to D, D0 and D1:

Rn(H) := ED

[
Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)

]]

Rn,y(H) := EDy

Eσ
sup
h∈H

1

ny

∑
i : yi=y

σih(Xi)

 ,
for y ∈ {0, 1}. Note Rn,y(H) is defined conditionally
on ny, the number of examples with label y. When ny
equals zero, we set Rn,y(H) = 1 by convention. Note
Rn(H) = O(

√
log p/n) when H is as in (7).

3.1 Margin result for AUC loss

The AUC loss, for (X,X ′) ∼ D1×D0, and its θ-margin-
adjusted version are given by:

AUC(S) := 1− Pr{S(X) > S(X ′)},

ÂUCθ(S) := 1− 1

n1

∑
i:yi=1

1

n0

∑
j:yj=0

1[S(Xi)−θ>S(Xj)].

Note ÂUCθ(S) is one minus the area under the curve
when one subtracts θ from the scores of 1-labelled
samples. Because AUC relies on pairwise interactions,
it is not readily decomposable over each sample point.
Still, the U -statistic structure of this loss allows for the
following result.
Theorem 1. Given θ > 0, δ ∈ (0, 1), n0, n1 > 0,
and a class of functions H from Rp to [−1, 1], the
following holds with probability at least 1 − δ: for all
score functions S : Rp → [−1, 1] obtained as convex
combinations of the elements of H,

AUC(S) ≤ ÂUCθ(S) +
4

θ
ζAUC(H) +

√
2 log(1/δ)

min{n0, n1}
,

where ζAUC(H) = Rmin{n0,n1},0(H)+Rmin{n0,n1},1(H).

Theorem 1 holds conditionally on n0, n1 > 0, which
will hold with very high probability unless D is too
imbalanced towards y = 0 or y = 1. When H is
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given by (7), the theorem implies, for constant δ,
that the score S produced by the algorithm satisfies
AUC(S) ≤ ÂUCθ(S)+o(1) with high probability when
min{n0, n1} � θ−2 log p. Theorem 1 can be extended
to similar pairwise losses.

3.2 Margin result for KS loss

For a score S, the KS loss and its margin-adjusted
sample version are defined as:

KS(S) = 1− sup
t∈R

(
Pr

X∼D0

{S(X) ≤ t}

− Pr
X∼D1

{S(X) ≤ t}
)
,

K̂Sθ(S) = 1−max
t∈R

(
1

n0

∑
i : yi=0

1[S(Xi)≤t]

− 1

n1

∑
i : yi=1

1[S(Xi)−θ≤t]

)
,

where, by convention, K̂Sθ(S) = 1 if n1 = 0 or n0 = 0.
Theorem 2. Given θ > 0, δ ∈ (0, 1), n0, n1 > 0,
and a class of functions H from Rp to [−1, 1], the
following holds with probability at least 1 − δ: for all
score functions S : Rp → [−1, 1] obtained as convex
combinations of the elements of H,

KS(S) ≤ K̂Sθ(S)+
8

θ
ζKS(H)+

√
log(2/δ)

2

(
1
√
n0

+
1
√
n1

)
,

where ζKS(H) = Rn0,0(H) +Rn1,1(H) +n
−1/2
0 +n

−1/2
1 .

Thus a score that achieves a small margin-adjusted KS
loss will, with high probability, have good performance
on the population, if we condition on n0, n1 > 0. Simi-
larly to Theorem 1, when the base learners are stumps,
we obtain

KS(S) ≤ K̂Sθ(S) + C

√
θ−2(1 + log p) + log(2/δ)

min{n0, n1}
.

Thus for constant δ, good training performance on
the margin-adjusted loss leads to good generalization
whenever θ−2 log p� min{n0, n1}.

3.3 Margin result for P@k loss

For the precision at k loss, given a score S : Rp →
[−1, 1] and α ∈ (0, 1), let tα(S) denote its (1 − α)-
quantile under the population distribution and t̂α(S)
the sample version,

tα(S) := inf {t ∈ R : Pr{S(X) ≤ t} ≥ 1− α}

t̂α(S) := inf

{
t ∈ R :

1

n

n∑
i=1

1[S(Xi)≤t] ≥ 1− α

}
.

The precision at k loss of S (for parameter α) and its
margin-adjusted sample version are

P@kα(S) := 1− Pr{y = 1, S(X) ≥ tα(S)},

P̂@kθ(S) := 1− 1

n

n∑
i=1

1[yi=1,S(Xi)−θ≥t̂α(S)].

Informally, P̂@kθ(S) is the sample precision at k when
1-labelled examples have their scores reduced by θ after
the threshold t̂α(S) has been computed. Similarly to
the KS loss, P@k is non-decomposable due to a global
threshold t̂α(S), but the lack of optimality structure
makes proving the next result much more involved.
Theorem 3. Given θ > 0, δ ∈ (0, 1), n0, n1 > 0, and
a class of functions H from Rp to [−1, 1], define

η̄n(H) :=

√
4Rn(H) +

4√
n

+

√
log(3/(δ − δ2))

n
,

Assume θ > 2η̄n(H) and Pr(min{n0, n1} > 0) ≥ 1− δ.
Then the following holds with probability ≥ 1 − δ: if
δ′ := δ − δ2, then for all score functions S : Rp →
[−1, 1] obtained as convex combinations of the elements
of H, it holds

P@k(S) ≤P̂@kθ(S) +
4Rn1,1(H) + 4√

n1

θ − 2η̄n(H)

+ η̄n(H) +

√
2

log(3/δ′)

n1
+

√
log(3/δ′)

2n
.

The proof techniques of the theorem above can be
generalized to other combinatorial losses that use a
restricted sample, such as partial AUC.

3.4 Subsampling

Subsampling can help ExactBoost avoid overfitting.
The next proposition is helpful in controlling its impact
in the optimization procedure for some losses.

Proposition 1. Let L̂ be either the ÂUC or the K̂S
loss. Consider a subset of indices I = I0 ∪ I1 ⊂ [n]
chosen independently and uniformly at random with
equal number of positive and negative cases, |I0| =
|I1| = k. Let hR be the optimal stump over the reduced
sample {(Xj , yj)}j∈I and score S and h∗ the optimal
stump over the entire sample {(Xi, yi)}i∈[n]. Then,

E[L̂(S + hR)] ≤ L̂(S + h∗) +
e

k
,

where the expectation is over the choice of I.

Hence, using random subsets of observations in Ex-
actBoost with balanced proportions of positive and
negative examples leads to an expected error close to
the optimal one.



ExactBoost: Directly Boosting the Margin in Combinatorial and Non-decomposable Metrics

3.5 Ensembling

Since minimizing the margin-adjusted empirical loss
can generalize to the population loss, it is natural
to investigate whether ExactBoost can also provide a
good ensembling technique for other classifiers. Indeed,
for some losses, it is possible to guarantee that the
empirical loss of the ensembler is smaller than the
empirical loss of each ensembler member.

Denote the vector of scores for the ith data point by
Zi := (S1(Xi), S2(Xi), . . . , SM (Xi))

T ∈ RM , M be-
ing the number of models, and train ExactBoost over
a modified dataset (Zi, yi)

n
i=1. The next proposition

shows that the training set performance of ExactBoost
over (Zi, yi)

n
i=1 using either the KS or P@k metrics is

always at least as good as that of the the best score
function over (Xi, yi)

n
i=1.

Proposition 2. Let L̂ be either the K̂S or the P̂@k
loss. Consider the score S∗ : RM → R obtained by
ExactBoost over the dataset (Zi, yi)

n
i=1 with initial score

S0 ≡ 0. Then:

L̂(Zi,yi)ni=1
(S∗) ≤ min

1≤m≤M
L̂(Xi,yi)ni=1

(Sm),

where L̂(Zi,yi)ni=1
(·) and L̂(Xi,yi)ni=1

(·) denote the loss
over the ensemble and the original data.

Section 4 shows that, in practice, ensembling with
ExactBoost leads to better results than ensembling with
other surrogate-based algorithms. The fact that the
inputs for the ensembler can be trained with surrogate-
based methods attenuates overfitting, and speeds up
ExactBoost by reducing the set of original features p
to the number of models M .

4 EXPERIMENTS

To test its performance, ExactBoost is compared
against 10 exact and surrogate-based algorithms, on
30 heterogeneous datasets, over three different losses.
For ease of presentation, results of 10 representative
datasets are shown in the main paper; the rest are in
the Supplementary Material.

Datasets. Table 1 displays the main characteristics
of each dataset, which span economic, medical, radar,
financial and ecological applications, and range from
balanced to imbalanced. Sources for the data can be
found in the Supplementary Material.

Surrogate benchmarks. ExactBoost is compared
to various standard learning algorithms: AdaBoost, k-
nearest neighbors, logistic regression and random forest
(via their Scikit-Learn implementation in Pedregosa
et al. (2011)), gradient boosting (via XGBoost, see

Dataset Observations Features Positives

a1a 1605 119 24.6%
german 1000 20 70.0%
gisette 6000 5000 50.0%
gmsc 150000 10 6.7%
heart 303 21 45.9%

ionosphere 351 34 64.1%
liver-disorders 145 5 37.9%

oil-spill 937 49 4.4%
splice 1000 60 48.3%

svmguide1 3089 4 35.3%

Table 1: Dataset properties.

Chen and Guestrin (2016)) and a 4-layer connected
neural net (via TensorFlow, see Abadi et al. (2015)).

Exact benchmarks. Several algorithms that specifi-
cally optimize the performance metric are considered.
For KS, the baseline is DMKS (Fang and Chen, 2019),
and, for P@k, the baseline is TopPush (Li et al., 2014).
For AUC, the baseline is RankBoost (Freund et al.,
2003), a boosting algorithm shown to optimize the AUC
under certain conditions in Cortes and Mohri (2003).

Dataset RankBoost DMKS TopPush

a1a 55.90× 102.78× 0.82×
german 23.98× 1.28× 0.88×
gisette OOT 55.68× 0.02×
gmsc OOT 22.89× 0.08×
heart 3.32× 19.00× 5.25×

ionosphere 3.97× 3.48× 2.69×
liver-disorders 1.91× 6.36× 12.53×

oil-spill 5.93× 7.92× 2.18×
splice 49.78× 1.19× 1.20×

svmguide1 220.05× 1.88× 4.27×

Table 2: Timings of various exact algorithms vs Ex-
actBoost (above 1× indicates ExactBoost is faster).
TopPush is fast but much less precise; see Table 3.

Hyperparameters. Hyperparameters were fixed
throughout the experiments. Baseline models were
trained with the package-provided hyperparameters;
see the Supplementary Material. Aided by experimen-
tal evidence on held-out datasets, ExactBoost uses as
default E = 250 runs, T = 50 rounds, subsampling of
20% and margin of θ = 0.05. See Subsection 4.1 for
further discussions.

Computational allowance, environment and
code. Experiments were run with four Intel Xeon
E5-4650 CPUs with 2.60 GHz, 64 threads, and 810 GB
of RAM. Code to reproduce figures and tables is avail-
able in the Supplementary Material. Methods had at
most 5 days to run on each dataset.

4.1 Effect of Hyperparameters on ExactBoost

ExactBoost has two main hyperparameters that con-
trol overfitting: the margin θ and the number of runs
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averaged E (see Algorithm 1). Figure 1 shows how the
margin affects the test error for the AUC, KS and P@k
losses in three different datasets. Generally, though not
always, the loss decreases with small positive margins,
but becomes increasing once the margin is too large.

To consider the number of runs to be averaged, Figure
2 displays the train and test KS loss landscape, as
well as ExactBoost’s trajectory averaging over E =
1, 2, 10, 100 and 250 runs, for the heart dataset. The
plot uses UMAP (McInnes and Healy, 2018) to reduce
the dimensionality of an ExactBoost run to 2D and
colors the corresponding KS loss of each point in the
mapping. The Supplementary Material includes more
details. As E grows, the train and test display lower
KS values and smoother trajectories.
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Figure 1: Effect of margin on ExactBoost’s test perfor-
mance on svmguide1, gmsc and splice. The vertical
line shows the default θ = 0.05. There are gains with
small margins; the performance degrades with large θ.

4.2 ExactBoost vs exact and surrogate
benchmarks

The performance of ExactBoost as an estimator is in-
vestigated via its 5-fold cross-validated test error. Table
3 shows that ExactBoost is generally better than loss-
specific alternatives. In particular, the table includes
comparisons to additional exact models available in the
literature, such as SVMPerf (Joachims, 2005), which
directly optimizes for multivariate performance metrics
such as P@k, and plugin logistic (Koyejo et al., 2014;
Dembczyński et al., 2017), a fast hybrid method that
uses the metric of interest, say AUC, to pick the opti-
mal threshold for logistic regression using a separate
data fold. Figure 3 shows that ExactBoost also has
good performance against surrogate benchmarks. Full
results are included in the Supplementary Material.

In terms of timings, Table 2 shows that ExactBoost
scales well even to large datasets. Note it is faster than

other exact alternatives, and while TopPush can be
faster, it is generally much less precise (see Table 3).

4.3 ExactBoost as an ensembler

In the experiments below, 5-fold cross-validation is used
to compare ExactBoost against other ensemblers. Six
base models were used: AdaBoost, k-nearest neighbors,
logistic regression, neural network, random forest and
XGBoost. These models were trained on training folds,
and their predictions on test folds were used as features
for the ensemble models.

Table 4 shows the results of using different surrogate
and exact models as ensemblers. The surrogate en-
semblers were AdaBoost, logistic regression, neural
network, random forest and XGBoost, while the ex-
act benchmarks were given by RankBoost (for AUC),
DMKS (for KS) and TopPush (for P@k).

ExactBoost is generally the best ensembler available.
In fact, it is able to match or overcome the perfor-
mance of the best base model available and is robust
to noisy features coming from poorly performing base
models. This is particularly attractive because, given
the discrete nature of combinatorial losses, it is often
the case that the best performing model changes from
dataset to dataset. ExactBoost’s success can be inter-
preted as transfer learning: it is able to better combine
high-signal features trained with surrogate losses by
considering the exact metric of interest.

5 CONCLUSION

This paper introduced ExactBoost, a stagewise boost-
ing algorithm that directly optimizes combinatorial
and non-decomposable losses. By a novel extension
of the notion of margin to this setting, it is possible
to give finite-sample bounds on the generalization er-
ror of the algorithm for popular loss functions with
varying levels of non-decomposability. The margin ex-
tension and the underlying proof techniques should
apply broadly and we anticipate that similar results
can be derived for other important non-decomposable
losses. Also, while ExactBoost uses stumps as its base
learners, it is straightforward to extend it (and its the-
oretical guarantees) to more general learners, such as
trees of higher depth, though that entails a higher com-
putational price. The theoretical results presented also
cover subsampling and ensembling techniques.

The empirical results above show that ExactBoost al-
gorithm is a fast, competitive classifier and an even
better ensembler. It is scalable both in terms of speed
and memory usage, and it is able to outperform other
loss-specific algorithms previously introduced in the
literature, as well as traditional surrogate alternatives.
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Figure 2: KS loss landscape visualizations via UMAP highlighting ExactBoost’s optimization trajectories, which
go from left to right. More averaged runs E lead to better train and test losses.

AUC KS P@k
Dataset ExactBoost RankBoost Plugin Logistic ExactBoost DMKS ExactBoost TopPush SVMPerf

a1a 0.11± 0.0 0.13± 0.0 0.20± 0.0 0.37± 0.0 0.37± 0.0 0.26± 0.1 0.29± 0.1 0.22± 0.1
german 0.23± 0.0 0.24± 0.0 0.28± 0.0 0.53± 0.0 0.55± 0.0 0.11± 0.0 0.26± 0.1 0.21± 0.0
gisette 0.01± 0.0 OOT 0.03± 0.0 0.09± 0.0 0.06± 0.0 0.02± 0.0 0.01± 0.0 0.01± 0.0
gmsc 0.21± 0.0 OOT 0.38± 0.0 0.44± 0.0 0.45± 0.0 0.52± 0.0 0.96± 0.0 0.85± 0.0
heart 0.09± 0.0 0.13± 0.0 0.19± 0.0 0.30± 0.0 0.28± 0.0 0.04± 0.1 0.13± 0.1 0.04± 0.1
iono 0.04± 0.0 0.04± 0.0 0.17± 0.0 0.13± 0.0 0.28± 0.0 0.03± 0.0 0.15± 0.1 0.16± 0.1
liver 0.22± 0.1 0.32± 0.1 0.35± 0.1 0.45± 0.1 0.50± 0.1 0.23± 0.1 0.47± 0.2 0.33± 0.2

oil-spill 0.09± 0.1 0.09± 0.1 0.39± 0.1 0.25± 0.1 0.45± 0.1 0.52± 0.3 0.96± 0.1 1.00± 0.0
splice 0.04± 0.0 0.02± 0.0 0.21± 0.0 0.16± 0.0 0.36± 0.0 0.03± 0.0 0.12± 0.0 0.10± 0.0
svmg1 0.01± 0.0 0.00± 0.0 0.05± 0.0 0.06± 0.0 0.09± 0.0 0.00± 0.0 0.00± 0.0 0.03± 0.0

Table 3: Evaluation of exact benchmarks. OOT indicates the time budget of 5 days was exceeded. ExactBoost
has the best performance for all metrics: it is faster and uses less memory than RankBoost and DMKS (see Table
2), and much more accurate than Plugin Logistic and TopPush.
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Figure 3: Test error for ExactBoost vs surrogate methods as estimators. Each point represents a dataset from
Table 1. Alternatives are generally worse than ExactBoost or statistically indistinguishable.

More broadly, ExactBoost shows promising results as
an ensembler of traditional machine learning classi-
fiers and prompts additional work on algorithms that
can further interweave surrogate-based and loss-specific
iterations to combine speed and accuracy.
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gmsc 0.51± 0.0 0.48± 0.0 0.74± 0.1 0.88± 0.0 0.65± 0.1 0.62± 0.0 0.96± 0.0
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Table 4: Evaluation of ensemblers. The exact benchmarks are RankBoost (AUC), DMKS (KS) and TopPush
(P@k). ExactBoost is generally the best performer (and top 2 in all cases, for all losses).
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Supplementary Material:
ExactBoost: Directly Boosting the Margin in Combinatorial and

Non-decomposable Metrics

A Proofs and technical results

Subsection A.1 collects some preliminary or technical results, while Subsection A.2 has the proofs for all the
results presented in the paper.

A.1 Technical Rresults

We present a general theoretical framework that we apply to obtain the margin results in Section A.2.

Let Z1, . . . , Zm be an iid sample from a probability distribution DZ over a feature space Z (with suitable σ-field).
Given a family of measurable functions G from Z to R, its (averaged) Rademacher complexity is defined as

Rm(G) := EZ1,...,Zm∼DZEσ sup
g∈G

∑m
i=1 σig(Zi)

m
,

where the σ1, . . . , σm are iid uniform over {−1,+1} and independent of the Zi. We assume implicitly throughout
this section that that the families G we consider is nice enough that the supremum is measurable and integrable.
A fundamental property of Rm(G) is the symmetrization inequality: if all functions g ∈ G are integrable,

EZ1,...,Zm∼DZ sup
g∈G

∑m
i=1 EZ∼DZg(Z)− g(Zi)

m
≤ 2Rm(G). (9)

A.1.1 Empirical vs. cumulative distribution functions

We now note a “margin-type” result relating population and empirical cumulative distribution functions of
elements of G. It essentially follows from (Koltchinskii and Panchenko, 2002, Theorem 1).

Lemma 1. With the above notation, assume further that the functions in G are bounded by 1 in absolute value.
Given η > 0, the inequality below holds with probability at least 1− δ:

∀g ∈ G, t ∈ R : Pr
Z∼DZ

{g(Z) ≤ t} ≤ 1

m

m∑
i=1

1[g(Zi)≤t+η] +
4Rm(G) + 4√

m

η
+

√
log(1/δ)

2m
.

Similarly, the following holds with probability at least 1− δ:

∀g ∈ G, t ∈ R :
1

m

m∑
i=1

1[g(Zi)≤t] ≤ Pr
Z∼DZ

{g(Z) ≤ t+ η}+
4Rm(G) + 4√

m

η
+

√
log(1/δ)

2m
.

Proof. We only prove the first of these results, as the second one is similar. Define:

∆ := sup
g∈G,t∈R

(
Pr

Z∼DZ
{g(Z) ≤ t} − 1

m

m∑
i=1

1[g(Zi)≤t+η]

)
.

Since ‖g‖∞ ≤ 1 for all g ∈ G, the term inside the brackets is equal to 0 for t ≥ 1 and at most 0 for t ≤ −1. In
particular, the supremum defining ∆ is nonnegative and achieved for some t ∈ [−1, 1].
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Now consider φη : R→ [0, 1] defined by:

φη(x) :=


1, x ≤ 0;
1− x

η , 0 < x ≤ η;

0, x > η.

(x ∈ R).

Then we see at once that 1[g(Zi)≤t+η] ≥ φη(g(Zi)− t) ≥ 1[g(Zi)≤t], so that, for any g ∈ G and t ∈ [−1, 1],

Pr
Z∼DZ

{g(Z) ≤ t} − 1[g(Zi)≤t+η] ≤ EZ∼DZφη(g(Z)− t)− φη(g(Zi)− t).

Therefore,

∆ ≤ ∆∗ := sup
g∈G, t∈[−1,1]

(
EZ∼Dφη(g(Z)− t)− 1

m

m∑
i=1

φη(g(Zi)− t)

)
.

We now consider ∆∗. The symmetrization inequality (9) implies that

E∆∗ ≤ 2Rm(G̃), (10)

where G̃ is the family of all functions of the form φη(g(·)− t)− φη(0) where g ∈ G and t ∈ [−1, 1]. Note also that
φη is 1/η-Lipschitz. Using items 4 and 5 of (Bartlett and Mendelson, 2002, Theorem 12), we see that:

Rm(G̃) ≤ 2
Rm(G) + 1√

m

η
. (11)

This bounds E∆∗. To obtain a concentration inequality, notice that the random variable ∆∗ is a function of
independent random variables Z1, . . . , Zn, and that changing the value of one of the Zi will change the value of
∆∗ by at most 1/m in absolute value. McDiarmid’s inequality implies:

Pr

{
∆∗ − E∆∗ ≤

√
log(1/δ)

2m

}
≥ 1− δ.

Combining this with (10) and (11) finishes the proof.

The following corollary of Lemma 1 will also be useful. It may be viewed as a high-probability uniform bound for
the Levy distance between empirical and population cdf’s of g ∈ G.

Corollary 1. In the setting of Lemma 1, let

η̄m(G) :=

√
4Rm(G) +

4√
m

+

√
log(1/δ)

2m
.

Then either of the following statements holds with probability at least 1− δ:

∀g ∈ G ∀t ∈ R :
1

m

m∑
i=1

1[g(Zi)≤t] ≤ Pr
Z∼DZ

{g(Z) ≤ t+ η̄m(G)}+ η̄m(G);

and

∀g ∈ G ∀t ∈ R : Pr
Z∼DZ

{g(Z) ≤ t} ≤ 1

m

m∑
i=1

1[g(Zi)≤t+η̄m(G)] + η̄m(G).

Proof. Apply both parts of Lemma 1 with δ/2 replacing δ and η = η̄m(G).
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A.1.2 Rademacher complexities and U-statistic-type sums of indicators

When we consider the AUC metric, we will need a “U-statistic” result for families G. Let D′Z be another probability
distribution over Z and Z ′1, . . . , Z ′m′ ∼ D′Z be an iid sample of size m′ from that distribution which is independent
from Z1, . . . , Zm. We let R′m′(G) denote the Rademacher complexity of G with respect to the new sample size m′
and the new distribution D′Z .
Lemma 2. With the above definitions and notation, let η > 0 and δ ∈ (0, 1) be given. Let mmin := min{m,m′} > 0.
Then the following holds with probability at least 1− δ: for all g ∈ G,

Pr
(Z,Z′)∼DZ×DZ′

{g(Z) ≤ g(Z ′)} ≤ 1

mm′

m∑
i=1

m′∑
i′=1

1[g(Zi)<g(Z′i′ )+η]

+ 4
Rmmin

(G) +R′mmin
(G)

η
+

√
log(1/δ)

mmin
.

Proof. The rough outline of this proof is similar to that of Lemma 1. We replace indicators by the function
φη; apply symmetrization to bound the expectation of a supremum; and use McDiarmid’s inequality to prove
concentration. The key difference is at the symmetrization step, where we need to circumvent the fact that we
are considering a U-statistic (rather than an iid sum).

Let φη be as in the proof of Lemma 1, and define

∆∗ := sup
g∈G

E(Z,Z′)∼DZ×DZ′φη(g(Z)− g(Z ′))− 1

mm′

m∑
i=1

m′∑
i′=1

φη(g(Zi)− g(Z ′i′))

 .

The reasoning in the previous proof shows that:

sup
g∈G

 Pr
(Z,Z′)∼DZ×DZ′

{g(Z) ≤ g(Z ′)} − 1

mm′

m∑
i=1

m′∑
i′=1

1[g(Zi)≤g(Z′i′ )+η]

 ≤ ∆∗. (12)

Our proof focuses on controlling ∆∗. We first notice a concentration property. Notice that ∆∗ is a function of
independent variables Zi and Z ′i′ . Since ‖φη‖∞ = 1, changing one of the Zi will change ∆∗ by at most 1/m
in absolute value, and changing a Z ′i′ will only change ∆∗ by at most 1/m′. Applying McDiarmid’s inequality
McDiarmid (1998), we obtain:

Pr

∆∗ − E∆∗ ≤
√√√√ log(1/δ)

2
(

1
1
m+ 1

m′

)
 ≥ 1− δ,

so that in particular

Pr

∆∗ − E∆∗ ≤

√
log(1/δ)

mmin

 ≥ 1− δ. (13)

We now need to bound E∆∗ in terms of Rademacher complexities. The main difficulty is that ∆∗ is not an iid
sum, and the symmetrization inequality (9) does not apply directly. However, one can use an averaging argument
to obtain an upper bound for the expectation in terms of an iid sum.

The argument is as follows. Let I be the set of all pairs (S, f), where S ⊂ [m] has size mmin and f : S → [m′] is
a one-to-one function (note that such (S, f) exist because mmin = min{m,m′}). By symmetry, we see that for all
(i, i′) ∈ [m]× [m′],

#{(S, f) ∈ I : i ∈ S, f(i) = i′}
#I

=
mmin

mm′
.

Therefore,
1

mm′

m∑
i=1

m′∑
i′=1

φη(g(Zi)− g(Z ′i′)) =
1

#I
∑

(S,f)∈I

∑
i∈S

φη(g(Zi)− g(Z ′f(i)))

mmin
.
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Now plug the above into the definition of ∆∗, and obtain:

∆∗ = sup
g∈G

 1

#I
∑

(S,f)∈I

∑
i∈S

E(Z,Z′)∼DZ×D′Zφη(g(Z ′)− g(Z))− φη(g(Zi)− g(Z ′f(i)))

mmin

 .

That is, ∆∗ is the supremum of an average over (S, f) ∈ I. The corresponding “average of suprema” is at least as
large, so

∆∗ ≤ 1

#I
∑

(S,f)∈I

sup
g∈G

(∑
i∈S

E(Z,Z′)∼DZ×D′Zφη(g(Z)− g(Z ′))− φη(g(Zi)− g(Z ′f(i)))

mmin

)
.

Crucially, all terms in the sum over (S, f) ∈ I have the same distribution. In particular, all terms in the RHS of
the preceding display have the same expectation. Considering the case where S = [mmin] and f(i) = i for each
i ∈ [mmin], we conclude:

E∆∗ ≤ E sup
g∈G

(
mmin∑
i=1

E(Z,Z′)∼DZ×D′Zφη(g(Z)− g(Z ′))− φη(g(Zi)− g(Z ′i))

mmin

)
.

The pairs {(Zi, Z ′i)}
mmin
i=1 are i.i.d, and we can now apply symmetrization inequality (9). Letting

G̃ := { all functions of the form “(z, z′) ∈ Z × Z 7→ φη(g(z)− g(z′))− φη(0)” w/ g ∈ G},

we obtain:

E∆∗ ≤ 2E sup
g̃∈G̃

(
mmin∑
i=1

σi g̃(Zi, Z
′
i)

mmin

)
where the σi are iid uniform over ±1 and independent from the Zi and Z ′i. As in the proof of Lemma 1, we
observe that φη is 1/η-Lipschitz, and apply item 5 of (Bartlett and Mendelson, 2002, Theorem 12) to obtain:

E∆∗ ≤ 4

η
E sup
g∈G

(
mmin∑
i=1

σi (g(Zi)− g(Z ′i))

mmin

)
≤

4Rmmin(G) + 4R′mmin
(G)

η
.

Combining this bound with (13) and (12) gives the Lemma.

A.1.3 Other auxiliary results

Proposition 3. If H consists of binary functions with VC dimension bounded by d, then Rn(H) ≤ C
√
d/n

and Rn,y(H) ≤ C
√
d/ny (conditionally on ny > 0) for some universal, distribution-independent constant C > 0.

If H = Stumps consists of all stumps over Rp with coefficients in [−1, 1], then Rn(Stumps) ≤ C
√

log p/n and
Rn,y(Stumps) ≤ C

√
log p/ny (conditionally on ny > 0), with C > 0 universal.

Proof of Proposition 3. The first statement is (Bartlett and Mendelson, 2002, Theorem 6, Lemma 4). The second
results from the following steps. Given a coordinate j ∈ [p], use x(j) to denote the j-th coordinate of x. Let
Stumpsj denote the set of all functions of the form

x ∈ Rp 7→ a1[x(j)≤ξ] + b1[x(j)>ξ], with a, b ∈ [−1, 1], ξ ∈ R.

Each f ∈ Stumpsj is a convex combination of the 0 function and functions of the form ±21[x(j)≤ξ], ±21[x(j)>ξ]. For
each j, each family {1[x(j)≤ξ]} ∪ {1[x(j)>ξ]} ∪ {0} comprises 0/1-valued functions with VC dimension bounded by
an absolute constant. From (Bartlett and Mendelson, 2002, Theorem 6, Lemma 4), their Rademacher complexities
are O(1/

√
n), which doesn’t change when these functions are multiplied by 2. Moreover, passing to the convex

hull does not change the Rademacher complexity, as shown in (Bartlett and Mendelson, 2002, Theorem 12, items
3 and 7). We deduce that Rn(Stumpsj) = O(1/

√
n). Now,

Rn(Stumps) − max
j∈[p]
Rn(Stumpsj) ≤ Emax

j∈[p]

[
sup

h∈Stumpsj

1

n

n∑
i=1

σih(Xi)− E

(
sup

h∈Stumpsj

1

n

n∑
i=1

σih(Xi)

)]
.
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The random variables inside the supremum in the RHS have zero mean. By McDiarmid’s inequality McDiarmid
(1998), they are also sub-Gaussian with variance proxies O(1/n). By (Vershynin, 2018, Exercise 2.5.10), the
expectation of the maximum satisfies:

Emax
j∈[p]

(
sup

h∈Stumpsj

1

n

n∑
i=1

σih(Xi)−Rn(Stumpsj)

)
≤ C

√
log p

n
, with C > 0 universal.

This implies Rn(Stumps) ≤ C
√

log p/n, with a potentially larger (but still universal) C > 0. The bounds for
Rn,y(Stumps) follow similarly once we condition on the number of examples with the two labels.

A.2 Proofs of the results in the paper

Theorem 4. Given θ > 0, δ ∈ (0, 1), n0, n1 > 0, and a class of functions H from Rp to [−1, 1], the following
holds with probability at least 1− δ: for all score functions S : Rp → [−1, 1] obtained as convex combinations of
the elements of H,

AUC(S) ≤ ÂUCθ(S) +
4

θ
ζAUC(H) +

√
2 log(1/δ)

min{n0, n1}
,

where ζAUC(H) = Rmin{n0,n1},0(H) +Rmin{n0,n1},1(H).

Proof of Theorem 4. As we explain below, the proof is a direct application of Lemma 2 to the two distributions
D1 = DZ and D0 = D′Z with G = conv(H), with η = θ. Importantly, the Rademacher complexities of G and H
are equal (Bartlett and Mendelson, 2002, Theorem 12).

The only slightly subtle aspect in our argument, which will also come up in later proofs, is the following. We
wish to control the probability of an event E given by “the inequality for AUC(S) in Theorem 4 holds for all
S in the convex hull of H.” Now consider what happens when one conditions on specific (non-random) values
n0 = m0 > 0 and n1 = m1 = n −m0 > 0; that is, m0,m1 = n −m0 are fixed (non-random) positive integers
such that Pr(n0 = m0, n1 = m1) > 0. Crucially, under this conditioning, the subsamples X1 = {Xi : yi = 1} and
X0{Xi : yi = 0} corresponding to 1- and 0-labelled examples (respectively) are iid with respective laws D1 and
D0, and independent from one another. Under this conditioning, Lemma 2 gives that E holds with probability
≥ 1− δ. This is irrespective of the choice of m0,m1 = n−m0 > 0. Therefore, we discover that

Pr(E | min{n0, n1} > 0) =

n−1∑
m0=1

Pr(E | n0 = m0, n1 = n−m0) Pr(n0 = m0, n1 = n−m0 | min{n0, n1} > 0)

≥1− δ.

Remark 1. The same reasoning we gave above shows that, for any event E,

Pr(E | min{n0, n1} > 0) ≥ min{Pr(E | n0 = m0, n1 = n−m0), 1 ≤ m0 ≤ n− 1}.

Moreover, under the conditioning in the RHS, the subsamples X1 = {Xi : yi = 1} and X0{Xi : yi = 0}
corresponding to 1- and 0-labelled examples (respectively) are iid with respective laws D1 and D0, and independent
from one another. In later proofs, we will abuse notation slightly and compute Pr(E) assuming that n0 and n1

are fixed positive constants, as all bounds on Pr(E | n0 = m0, n1 = n−m0) we obtain are uniform in the choice
of 0 < m0 < n .

Theorem 5. Given θ > 0, δ ∈ (0, 1), n0, n1 > 0, and a class of functions H from Rp to [−1, 1], the following
holds with probability at least 1− δ: for all score functions S : Rp → [−1, 1] obtained as convex combinations of
the elements of H,

KS(S) ≤ K̂Sθ(S) +
8

θ
ζKS(H) +

√
log(2/δ)

2

(
1
√
n0

+
1
√
n1

)
,

where ζKS(H) = Rn0,0(H) +Rn1,1(H) + n
−1/2
0 + n

−1/2
1 .
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Proof of Theorem 5. We want to prove that, with probability ≥ 1− δ, conditionally on min{n0, n1} > 0, for all
S in the convex hull of H,

KS(S) ≤ K̂Sθ(S) +
8

θ
ζKS(H) +

√
log(2/δ)

2

(
1
√
n0

+
1
√
n1

)
, (14)

where
ζKS(H) = Rn0,0(H) +Rn1,1(H) +

1
√
n0

+
1
√
n1
.

To this end, we apply Lemma 1 from Section A.1.1 to the two subsamples X1 and X0, with η = θ/2, δ/2
replacing δ, and G = conv(H) equal to the convex hull of H. As described in Remark 1 above, we abuse notation
slightly and treat n0, n1 as fixed (non-random) positive integers in what follows; that is, n0, n1 represent specific
values of these random variables. Under this (implicit) conditioning, the subsamples X1 = {Xi : yi = 1} and
X0{Xi : yi = 0} corresponding to 1- and 0-labelled examples (respectively) are iid with respective laws D1 and
D0, and independent from one another. Thus Lemma 1 indeed applies.

To continue, we recall that the Rademacher complexities of G and H are the same (see (Bartlett and Mendelson,
2002, Theorem 12)). Therefore, Lemma 1 allows us to deduce that, conditionally on specific values of n0, n1 > 0,
with probability at least 1− δ, the following two inequalities hold simultaneously for all S ∈ conv(H) and t ∈ R:

Pr
X∼D1

{S(X) ≤ t} ≤ 1

n1

∑
i : yi=1

1[S(Xi)≤t+ θ
2 ] + ε1,

1

n0

∑
i : yi=0

1[S(Xi)≤t− θ2 ] ≤ Pr
X∼D0

{S(X) ≤ t}+ ε0,

where, for y = 0, 1:

εy :=
8Rny,y(G) + 8√

ny

θ
+

√
log(2/δ)

2ny
.

Now notice that, when these two inequalities hold, we also have

KS(S)− 1 = inf
t∈R

( Pr
X∼D1

{S(X) ≤ t} − Pr
X∼D0

{S(X) ≤ t})

≤ inf
t∈R

 1

n1

∑
i : yi=1

1[S(Xi)≤t+ θ
2 ] −

1

n0

∑
i : yi=0

1[S(Xi)≤t− θ2 ]

+ ε0 + ε1

= K̂Sθ(S)− 1 + ε0 + ε1,

which inspection reveals to be the same inequality as (14). Therefore, the probability of (14) holding is also at
least 1− δ (conditionally on n0, n1 > 0).

Theorem 6. Given θ > 0, δ ∈ (0, 1), n0, n1 > 0, and a class of functions H from Rp to [−1, 1], define

η̄n(H) :=

√
4Rn(H) +

4√
n

+

√
log(3/(δ − δ2))

n
,

Assume θ > 2η̄n(H) and Pr(min{n0, n1} > 0) ≥ 1 − δ. Then the following holds with probability ≥ 1 − δ: if
δ′ := δ − δ2, then for all score functions S : Rp → [−1, 1] obtained as convex combinations of the elements of H,
it holds

P@k(S) ≤P̂@kθ(S) +
4Rn1,1(H) + 4√

n1

θ − 2η̄n(H)

+ η̄n(H) +

√
2

log(3/δ′)

n1
+

√
log(3/δ′)

2n
.
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Proof of Theorem 6. This proof is somewhat more complex than preceding examples. As before, let G := conv(H)
denote the convex hull of H. We will use below that the Rademacher complexities of G and H are always equal.

For convenience, we define

Γ := sup
S∈G

 1

n1

∑
i : yi=1

1[S(Xi)≥t̂α(S)+θ] − Pr
X∼D1

{S(X) ≥ tα(S)}

 , (15)

so that we can write, for any S ∈ G:

P@k(S)− P̂@kθ(S) ≤ Pr
(X,y)∼D

{y = 1}Γ (16)

+

 1

n1

∑
i : yi=1

1[S(Xi)≥t̂α(S)+θ]

 (
n1

n
− Pr

(X,y)∼D
{y = 1}

)
(17)

≤ Pr
(X,y)∼D

{y = 1}Γ + max

{(
n1

n
− Pr

(X,y)∼D
{y = 1}

)
, 0

}
. (18)

If we define an event,

C =

{
n1

n
≤ Pr

(X,y)∼D
{y = 1}+

√
log(3/(δ − δ2))

2n

}
, (19)

it is clear that Pr(C) ≥ 1−δ/3+δ2/3 due to a simple application of Hoeffding’s inequality. Since Pr(min{n0, n1} >
0) ≥ 1− δ,

Pr(C | min{n0, n1} > 0) ≥ 1− Pr(Cc)

Pr(min{n0, n1} > 0)
≥ 1− δ/3.

Now consider another event D defined as follows: either min{n0, n1} = 0, or

Γ ≤ ηn(H)

Pr(X,y)∼D{y = 1}
+

4Rn1,1(H) + 4√
n1

θ − 2η̄n(H)
+

√
log(3/δ)

2n1
. (20)

We see from the above that, if D ∩ C holds, then (18) implies that either min{n0, n1} = 0, or the inequality on
P@k(S)− P̂@kθ(S) claimed in the statement of the Theorem holds for all S ∈ G. Therefore, we will be done once
we show that Pr(D ∩ C | min{n0, n1} > 0) ≥ 1− δ. In fact, since Pr(C | min{n0, n1} > 0) ≥ 1− δ/3, it suffices
to show Pr(D | min{n0, n1} > 0) ≥ 1− 2δ/3. This will be our goal for the remainder of the proof.

To continue, we define a third event which we use to control tα(S), t̂α(S) and related quantities. Define

E :=

{
∀S ∈ G, ∀t ∈ R : Pr

X∼D
{S(X) ≥ t} ≤ 1

n

n∑
i=1

1[S(Xi)≥t−η̄n(H)] + η̄n(H)

}
. (21)

This is the kind of event controlled by Corollary 1, except that we have S(Xi) ≥ t and S(X) ≥ t− θ as opposed
to “≤” inequalities. However, the corollary still applies if we consider the functions −S as S ranges over G. This
is tantamount to applying the corollary to the family of functions −G = {−S : S ∈ G}. Since −G has the same
Rademacher complexity as G and H, we obtain Pr(E) ≥ 1− δ/3 + δ2/3. As noted in the case of C, we obtain
that Pr(E | min{n0, n1} > 0) ≥ 1− δ/3.

We now claim the following.

Claim 1. When E holds,

Pr
X∼D1

{S(X) ≥ tα(S)} ≥ Pr
X∼D1

{S(X) ≥ t̂α(S) + 2η̄n(H)} − η̄n(H)

Pr(X,y)∼D{y = 1}
. (22)
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Indeed, the claim is trivial if t∗ :− t̂α(S) + 2η̄n(H) ≥ tα(S). Otherwise,

Pr
X∼D1

{S(X) ≥ t∗} − Pr
X∼D1

{S(X) ≥ tα(S)} =
Pr(X,y)∼D{y = 1, t∗ ≤ S(X) < tα(S)}

Pr(X,y)∼D{y = 1}

≤
Pr(X,y)∼D{t∗ ≤ S(X) < tα(S)}

Pr(X,y)∼D{y = 1}

Since we know from the definition of tα(S) that Pr(X,y)∼D{tα(S) ≤ S(X)} ≥ α, we will be done if we show
PrX∼D{S(X) ≥ t∗} ≤ α + η̄n(H) whenever D holds. To do this, take t = t∗ in the definition of E. Since
t− η̄n(H) > t̂α(S), and the latter is a (1− α)-quantile for S, under the sample distribution, we obtain that:

1

n

n∑
i=1

1[S(Xi)≥t∗−η̄n(H)] ≤ α,

and so, when E holds,
Pr
X∼D
{S(X) ≥ t∗} ≤ α+ η̄n(H).

This gives us the claim.

To continue, we go back to the definition of Γ in (15) and notice that, by the Claim, when E holds,

Γ ≤ η̄n(H)

Pr
(X,y)∼D

{y = 1}
+ Γ∗,

where we define

Γ∗ := sup
S∈G,t∈R

(
1

n1

∑
i : yi=1

1[S(Xi)≥t] − Pr
X∼D1

{S(X) ≥ t− (θ − 2η̄n(H))}

)
.

Recall that our goal is to show that the probability Pr(D | min{n0, n1} > 0) above is at least 1− 2δ/3. By the
above reasoning, we see that D ⊃ E ∩ F , where

F :=

Γ∗ ≤
4Rn1,1(H) + 4√

n1

θ − 2η̄n(H)
+

√
log(3/δ)

2n1

 .

Since we know already that Pr(E | min{n0, n1} > 0) ≥ 1 − δ/3, we will be done once we show that Pr(F |
min{n0, n1} > 0) ≥ 1− δ/3, which (as seen above) will follow from Pr(F ) ≥ 1− δ/3 + δ2/3.

At this last step, we will apply the reasoning in Remark 1 above: that is, we treat n0 and n1 as fixed constants
and the subsamples X0,X1 as iid and independent. Under this (implicit) conditioning, Γ∗ is almost the kind
of quantity to which Lemma 1 applies, with η = θ − 2η̄n(H) > 0. The differences one notices is that there is a
minus sign in front of η, and there are “ ≥” signs where “≤” should be. As we observed following (21), one can
circumvent this by applying the Lemma to −G. If we do that (with δ/3− δ2/3 replacing δ), we obtain that the
event satisfies Pr(F ) ≥ 1− δ/3 + δ2/3, as desired.

Proposition 1. Let L̂ be either the ÂUC or the K̂S loss. Consider a subset of indices I = I0 ∪ I1 ⊂ [n] chosen
independently and uniformly at random with equal number of positive and negative cases, |I0| = |I1| = k. Let hR
be the optimal stump over the reduced sample {(Xj , yj)}j∈I and score S and h∗ the optimal stump over the entire
sample {(Xi, yi)}i∈[n]. Then,

E[L̂(S + hR)] ≤ L̂(S + h∗) +
e

k
,

where the expectation is over the choice of I.

Proof of Proposition 1. The idea of the proof is that any observation from the original sample is close (the precise
meaning of this statement will be defined below) to some observation in the subsample with high probability.
Moreover, the better is such approximation, the lower is the impact on the minimization of the target loss.
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First, consider L̂ = K̂S. For each j ∈ [p], let

fj,≤(a, ξ) :=

n∑
i=1

ρi 1[a≤ti,Xi,(j)≤ξ];

fj,>(b, ξ) :=

n∑
i=1

ρi 1[b≤ti,Xi,(j)>ξ],

Note that our objective function K̂S(S + h) is one minus the sum of fj,≤ and fj,> where h is a stump with
parameters (a, b, j, ξ). Hence, our problem is equivalent to maximizing fj,≤ + fj,>. We also use ti = t̂(S)− S(Xi).
For convenience, we assume the sample has been ordered so that t1 ≤ t2 ≤ · · · ≤ tn.

Now imagine a = ti is changed to a′ = ti′ with i′ ≤ i. Notice that:

fj,≤(ti, ξ)− fj,≤(ti′ , ξ) =

i−1∑
`=i′

ρi 1[Xi,(j)≤ξ] ∈
[
−pos(i, i′)

n1
,

neg(i, i′)

n0

]
,

where pos(i, i′) and neg(i, i′) count the number of positive and negative examples between ti and ti′ , including
the largest of the two extreme points (these are well-defined even if i′ > i). Therefore,

‖fj,≤(ti, ξ)− fj,≤(ti′ , ξ)‖ ≤ max

{
pos(i, i′)

n1
,

neg(i, i′)

n0

}
(23)

If we like, we can say that the above implies that fj,≤(ti, ξ) is a 1-Lipschitz function of i in the pseudometric:

d(i, i′) := max

{
pos(i, i′)

n1
,

neg(i, i′)

n0

}
.

A similar property holds for the f>,j function.

Now let (a∗, b∗, j∗, ξ∗) be the parameters of the optimal h∗. Say a∗ = ti∗ and b∗ = tj∗ for indices i∗, j∗ ∈ [n].
We consider a modified function h̃ where a∗, b∗ are replaced by points t̃i, tj̃ with ĩ, j̃ ∈ I chosen to minimize
d(i∗, ĩ) + d(j∗, j̃). Notice that:

K̂S(S + hR) ≤ K̂S(S + h̃)

because h̃ is feasible for the optimization problem of which hR achieves the minimum. Therefore,

E[K̂S(S + hR)] ≤ E[K̂S(S + h̃)]

≤ K̂S(S + h∗)− E[K̂S(S + h∗)− K̂S(S + h̃)]

≤ K̂S(S + h∗) + E[d(i∗, ĩ) + d(j∗, j̃)],

where the last step uses the Lipschitz property.

To finish, we bound the expected distances in the RHS.

Let ` ∈ R. Suppose there are at least b`n1c positive examples to the right of ti∗ , denoted ti1 , . . . , tib`n1c
, and at

least b`n0c negative examples to the right of ti∗ , denoted tj1 , . . . , tjb`n0c
. If tib`n1c

≤ tjb`n0c
, then for any k ≤ b`n1c

with ik ∈ I1, we have d(i∗, ĩ) ≤ `. To see this, note that

d(i∗, ĩ) ≤ d(i∗, ik) = max

{
pos(i∗, ik)

n1
,

neg(i∗, ik)

n0

}
≤ max

{
`n1

n1
,
`n0

n0

}
.

Then,

Pr
[
d(i∗, ĩ) > `

]
≤ Pr

[
I1 ∩ {ti1 , . . . , tib`n1c

} = ∅
]

≤
(

1− b`n1c
n1

)k
≤ exp

(
−k b`n1c

n1

)
≤ exp

(
−k
(
`n1

n1
− 1

n1

))
= exp (−k`) exp (k/n1).
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Note that the same reasoning works even if there are less than b`n1c positive examples.

Similarly, if tib`n1c
> tjb`n0c

and some ik ∈ I0 for k ≤ b`n0c, Pr
[
d(i∗, ĩ) > `

]
≤ exp (−k`) exp (k/n0). Then

E[d(i∗, ĩ)] ≤
∫ ∞

0

Pr
[
d(i∗, ĩ) > `

]
d` ≤ max

{
ek/n1 , ek/n0

}∫ ∞
0

e−k`d` =
max

{
ek/n1 , ek/n0

}
k

And if k ≤ min{n1, n0}, we bound

E[d(i∗, ĩ)] ≤
e

k
,

and we are done.

Now, let L̂ = ÂUC. We’ll apply the same strategy as above. As with the KS loss, the optimal stump coefficients
can be searched on a finite set. In this case, we have {tij : tij = S(Xi) − S(Xj) with i, j ∈ [n]}. For ease of
calculation, consider some stump h(X) = tpq1[X(m)≤ξ]. Then,

ÂUC(S + h) = 1− 1

n0n1

∑
{i:yi=1}

∑
{j:yj=0}

1[S(Xi)+h(Xi)>S(Xj)+h(Xj)]

= 1−
n∑
i=1

n∑
j=1

ρij1[tij+h(Xi)−h(Xj)>0]

= 1−
n∑
i=1

n∑
j=1

ρij1[tij+h(Xi)−h(Xj)>0]

where ρij = 1
n0n1

1[yi=1]1[yj=0]. Note that

h(Xi)− h(Xj) = tpq(1[Xi,(m)≤ξ] − 1[Xj,(m)≤ξ]).

If tpq is changed to some tp′q′ ≤ tpq so that h′(X) = tp′q′1[X(m)≤ξ], we have

1[tij+h(Xi)−h(Xj)>0] − 1[tij+h′(Xi)−h′(Xj)>0] = 
1[tij+tpq>0] − 1[tij+tp′q′>0], if Xi,(m) ≤ ξ < Xj,(m)

1[tij−tpq>0] − 1[tij−tp′q′ )>0], if Xi,(m) > ξ ≥ Xj,(m)

0, if Xi,(m) ≤ ξ, and Xj,(m) ≤ ξ
0, if Xi,(m) > ξ, and Xj,(m) > ξ

Therefore,

ÂUC(S + h′)− ÂUC(S + h) ∈
[
−#J−((p, q), (p′, q′))

n0n1
,

#J+((p, q), (p′, q′))

n0n1

]
where

J−((p, q), (p′, q′)) = {(i, j) : yi = 1, yj = 0, −tp′q′ > tij > −tpq}
J+((p, q), (p′, q′)) = {(i, j) : yi = 1, yj = 0, tp′q′ < tij < tpq}.

Therefore, ∥∥∥ÂUC(S + h)− ÂUC(S + h′)
∥∥∥ ≤ max

{
#J−((p, q), (p′, q′))

n0n1
,

#J+((p, q), (p′, q′))

n0n1

}
≤ #J((p, q), (p′, q′))

n0n1
,
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where J((p, q), (p′, q′)) = J−((p, q), (p′, q′)) ∪ J+((p, q), (p′, q′)). The rest of the proof follows the same strategy
used in the K̂S loss, replacing the pseudometric d with d̃, where

d̃((p, q), (p′, q′)) =
#J((p, q), (p′, q′))

n0n1
.

Now let the optimal stump be h∗(x) = tp∗q∗1[x(m∗)≤ξ∗] and, again, consider a modified function h̃ where tp∗q∗ is
replaced by a point tp̃q̃ with p̃, q̃ ∈ I chosen to minimize d̃((p∗, q∗), (p̃, q̃)). Recall that the optimal stump over the
reduced sample, hR, satisfies

ÂUC(S + hR) ≤ ÂUC(S + h̃)

and therefore,

E
[
ÂUC(S + hR)

]
≤ E

[
ÂUC(S + h̃)

]
≤ ÂUC(S + h∗)− E

[
ÂUC(S + h∗)− ÂUC(S + h̃)

]
≤ ÂUC(S + h∗) + E

[
d̃((p∗, q∗), (p̃, q̃))

]
And finally, we bound the expected distance on the RHS. Let ` ∈ R. Suppose there are at least r = b`n1n0c pairs
(i, j) ∈ J((p, q), (p′, q′)) such that tij ≤ tp∗q∗ , denoted ti1j1 , . . . , tirjr . Then, d̃((p∗, q∗), (p̃, q̃)) ≤ `. To verify this,
note that for any pair (p, q) with tpq ≤ tirjr such that p ∈ I1, q ∈ I0, we have

d̃((p∗, q∗), (p̃, q̃)) ≤ d̃((p∗, q∗), (p, q))

=
#J((p∗, q∗), (p, q))

n0n1

≤ `n1n0

n1n0
= `

Moreover, note that r ≤ r1r0 where r1 is the number of distinct indices is, s ≤ r, such that yis = 1 and r0 is the
number of distinct indices js, s ≤ r, such that yjs = 0. Then,

Pr
[
d̃((p∗, q∗), (p̃, q̃)) > `

]
≤ Pr [I1 × I0 ∩ {(i1, j1), . . . , (ir, jr)} = ∅]

≤
(

1− r1

n1

)k (
1− r0

n0

)k
≤
(

1− r1r0

n1n0

)k
≤
(

1− b`n0n1c
n0n1

)k
≤ exp

(
−k b`n0n1c

n0n1

)
≤ exp

(
−k
(
`n0n1

n0n1
− 1

n0n1

))
= exp(−k`) exp(k/(n0n1))

where the third inequality follows from the fact that r0 ≤ n0 and r1 ≤ n1. Then,

E
[
d̃((p∗, q∗), (p̃, q̃))

]
≤
∫ ∞

0

Pr
[
d̃((p∗, q∗), (p̃, q̃)) > `

]
d`

≤ ek/(n0n1)

∫ ∞
0

e−k`d` =
ek/(n0n1)

k
≤ e

k
.
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Proposition 2. Let L̂ be either the K̂S or the P̂@k loss. Consider the score S∗ : RM → R obtained by ExactBoost
over the dataset (Zi, yi)

n
i=1 with initial score S0 ≡ 0. Then:

L̂(Zi,yi)ni=1
(S∗) ≤ min

1≤m≤M
L̂(Xi,yi)ni=1

(Sm),

where L̂(Zi,yi)ni=1
(·) and L̂(Xi,yi)ni=1

(·) denote the loss over the ensemble and the original data.

Proof of Proposition 2. For any loss L̂, ExactBoost obtains a sequence of score functions with decreasing values
of L̂ . Therefore, the loss of S∗ is upper bounded by that of S∗,1, the stump function obtained in the first round
of ExactBoost.

Now take any 1 ≤ m ≤ M and t ∈ R and consider the stump function hm,t : RM → R, defined via hm,t(z) =
1[z(m)≥t], where z(m) denotes the mth entry of z. Since S∗,1 has the smallest loss over training data of all stumps,
for all t ∈ R and 1 ≤ m ≤M , it holds that:

L̂(Zi,yi)ni=1
(S∗) ≤ L̂(Zi,yi)ni=1

(S∗,1) ≤ L̂(Zi,yi)ni=1
(hm,t). (24)

The remainder of the proof consists of applying (24) judiciously. First, consider the K̂S loss. To estimate the K̂S
loss for hm,t, let n0, n1 denote the numbers of 0- and 1-labelled examples in (Xi, yi). Then

K̂S(Zi,yi)ni=1
(hm,t) = inf

s∈R

 1

n1

∑
i:yi=1

1[hm,t(Zi)≤s] +
1

n0

∑
i:yi=0

1[hm,t(Zi)>s]

 .

In particular, taking the specific value s = 0 instead of the infimum in the right-hand side gives an upper bound
for the K̂S losses of S∗, S∗,1 and hm,t. Since 1[hm,t(Zi)≤0] = 1[Sm(Xi)≤t] and 1[hm,t(Zi)>0] = 1[Sm(Xi)>t], from (24)
it follows that, for all t ∈ R and 1 ≤ m ≤M ,

K̂S(Zi,yi)ni=1
(S∗) ≤

1

n1

∑
i:yi=1

1[Sm(Xi)≤t] +
1

n0

∑
i:yi=0

1[Sm(Xi)>t].

Minimizing the right-hand side over t for a given m shows that

K̂S(Zi,yi)ni=1
(hm,t) ≤ K̂S(Xi,yi)ni=1

(Sm),

and taking the minimum over m finishes the proof in the case L̂ = K̂S.

Now consider the metric P̂@k. For each 1 ≤ m ≤M , let t̂α(Sm) denote the (1− α)-quantile of the score Sm on
the dataset (Xi, yi)

n
i=1. Apply (24) to each m and to values t < t̂α(Sm). To compute P̂@k(Zi,yi)(hm,t), note that,

for 0 ≤ s < 1, hm,t(Zi) ≤ s if and only if Z(m)
i = Sm(Xi) < t. Since t is smaller than the (1− α)-quantile, for all

0 ≤ s < 1 :
1

n

n∑
i=1

1[hm,t(Zi)≤s] =
1

n

n∑
i=1

1[Sm(Xi)≤t] < 1− α.

Since hm,t takes binary values, the (1− α)-quantile of the vector (hm,t(Zi))
n
i=1 is 1, and from (24) it follows that

for any 1 ≤ m ≤M and t < t̂α(Sm),

P̂@k(Zi,yi)ni=1
(S∗) ≤ P̂@k(Zi,yi)ni=1

(hm,t) = 1− 1

n1

∑
i : yi=1

1[hm,t(Zi)≥1] = 1− 1

n1

∑
i : yi=1

1[Sm(Xi)≥t].

When t↗ t̂α(Sm), it holds that 1[Sm(Xi)≥t] → 1[Sm(Xi)≥t̂α(Sm)], so, for all 1 ≤ m ≤M ,

P̂@k(Zi,yi)ni=1
(S∗) ≤ 1− 1

n1

∑
i : yi=1

1[Sm(Xi)≥t̂α(Sm)] = P̂@k(Xi,yi)ni=1
(Sm).

Minimizing the right-hand side over m finishes the proof.
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B Pseudocodes for evaluating metrics

Algorithm 3 AUC calculation. Complexity: O(n log n)

function AUC(labels y, scores S)
n(0) ← count({Si : i = 1, . . . , n; yi = 0})
n(1) ← count({Si : i = 1, . . . , n; yi = 1})
S(0) ← sort({(Si, yi) : i = 1, . . . , n; yi = 0})
S(1) ← sort({(Si, yi) : i = 1, . . . , n; yi = 1})

v ← 0,m← 0
i← 0, j ← 0
while i ≤ n(1) ∧ j ≤ n0 do

if S(1)
i < S

(0)
j then

v ← v +m
i← i+ 1

else
m← m+ 1
j ← j + 1

end if
end while
v ← v + n(0)(n(1) − i)
return v

end function
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Algorithm 4 KS threshold calculation. Complexity: O(n log n)

function KSThreshold(labels y, scores S)
n(0) ← count({Si : i = 1, . . . , n; yi = 0})
n(1) ← count({Si : i = 1, . . . , n; yi = 1})
S(0) ← sort({(Si, yi) : i = 1, . . . , n; yi = 0})
S(1) ← sort({(Si, yi) : i = 1, . . . , n; yi = 1})

v ← 0, v? ← 0, t? ← 0
i← 0, j ← 0
while i ≤ n(1) ∧ j ≤ n(0) do

if S(1)
i < S

(0)
j then

t← S
(1)
i

i← i+ 1
v ← v − 1/n(1)

else
t← S

(0)
j

j ← j + 1
v ← v + 1/n(0)

end if
if v > v? then

v? ← v
t? ← t

end if
end while
return t?

end function

Algorithm 5 KS calculation given threshold. Complexity: O(n)

function KS(labels y, scores S, threshold t)
n(0) ← count({Si : i = 1, . . . , n; yi = 0})
n(1) ← count({Si : i = 1, . . . , n; yi = 1})

v(0) ← 0, v(1) ← 0
for i = 0, . . . , n do

if yi = 0 then
v(0) ← v(0) + 1[Si≤t]

else
v(1) ← v(1) + 1[Si≤t]

end if
end for

return v(0)/n(0) − v(1)/n(1)

end function
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Algorithm 6 P@k calculation. Complexity: O(n log n)

function P@k(labels y, scores S, k)
n(0) ← count({Si : i = 1, . . . , n; yi = 0})
n(1) ← count({Si : i = 1, . . . , n; yi = 1})
S(0) ← sort({(Si, yi) : i = 1, . . . , n; yi = 0})
S(1) ← sort({(Si, yi) : i = 1, . . . , n; yi = 1})

v ← 0
i← n(1), j ← n(0)

while 1 ≤ i ∧ 0 ≤ j ∧ k > 0 do
if S(1)

i > S
(0)
j then

v ← v + 1
i← i− 1

else
j ← j − 1

end if
k ← k − 1

end while
v ← v + min{k, i}
return v

end function

C Further details on Algorithm 2

Let S′(A,B,Ξ) = S +A1[X(j)≤Ξ] +B1[X(j)>Ξ] − (1 + |B −A|/2)θy, and let � be elementwise multiplication.

To solve (4), assign intervals A,B,Ξ as the search domain [lines 1-2]. Then, c times [line 3], halve it as follows:
for each possible way to halve A,B,Ξ [line 5] (by the bissections (Ξ(b), A(b), B(b)) ∈ b(A)× b(B)× b(Ξ) where
b([a, b]) = {[a, (a+ b)/2], [(a+ b)/2, b]}), compute the IA lower bound in the subinterval, L̂(S′(A(b), B(b),Ξ(b)),y)

[lines 6-9], using L̂(S′(A(b), B(b),Ξ(b)),y) = L̂(y � S′(A(b), B(b),Ξ(b)) + (1 − y) � S′(A(b), B(b),Ξ(b)),y), i.e.,
evaluating the IA lower bound for the losses is equivalent to evaluating the loss on the upper bound produced for
the score when y = 1 and on the lower bound for the score when y = 0 (this follows from standard definitions of
IA operations on our losses). Then, pick as the new search domain the subdomain with lowest IA lower bound
[lines 4,10]. Since each step halves the search domain and gives an extra bit of numerical precision, c is fixed as
the precision of the floating-point type. After c iterations, we have small intervals A,B,Ξ containing the (greedy)
minimum. To produce values ξ?, a?, b?, select the corner of the cube A×B × Ξ with smallest loss [lines 13-15].

Note the algorithm’s complexity is O((c+1)f(n)2k), where c is fixed as bits of float precision, f(n) = O(n log n) is
the cost of evaluating L̂, and k = 3 parameters, totalling O(n log n); as it relies on fast operations, the algorithm
is very quick (see Table 2).
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D Datasets characteristics and sources

Dataset Observations Features Positives

a1a 1605 119 24.6%
australian 690 14 44.5%
banknote 1372 4 44.5%

breast-cancer 683 10 35.0%
cod-rna 59535 8 33.3%

colon-cancer 62 2000 35.5%
covtype 581012 54 48.8%
cskaggle 307511 97 8.1%
diabetes 768 8 34.9%
fourclass 862 2 35.6%
german 1000 20 70.0%
gisette 6000 5000 50.0%
gmsc 150000 10 6.7%
heart 303 21 45.9%

housing 506 13 6.9%
ijcnn1 49990 22 9.7%

ionosphere 351 34 64.1%
liver-disorders 145 5 37.9%

madelon 2000 500 50.0%
mammography 11183 6 2.3%

mq2008 15211 46 19.3%
oil-spill 937 49 4.4%
phishing 11055 68 55.7%
phoneme 5404 5 29.3%

skin-nonskin 245057 3 79.2%
sonar 208 60 46.6%
splice 1000 60 48.3%

svmguide1 3089 4 35.3%
svmguide3 1243 22 23.8%
taiwan 30000 24 22.1%
w1a 2477 300 2.9%

Table 5: Datasets characteristics

Many datasets above were retrieved from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
binary. Exceptions are:

• australian:
http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/australian/

• banknote:
https://archive.ics.uci.edu/ml/machine-learning-databases/00267

• cskaggle:
https://www.kaggle.com/c/home-credit-default-risk/data

• diabetes:
https://github.com/jbrownlee/Datasets/

• german:
https://online.stat.psu.edu/stat508/resource/analysis/gcd

• gmsc:
https://www.kaggle.com/c/GiveMeSomeCredit/data

• heart:
https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary
http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/australian/
https://archive.ics.uci.edu/ml/machine-learning-databases/00267
https://www.kaggle.com/c/home-credit-default-risk/data
https://github.com/jbrownlee/Datasets/
https://online.stat.psu.edu/stat508/resource/analysis/gcd
https://www.kaggle.com/c/GiveMeSomeCredit/data
https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease
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• housing:

https://archive.ics.uci.edu/ml/machine-learning-databases/housing

• ionosphere:

https://github.com/jbrownlee/Datasets/

• mammography:

https://github.com/jbrownlee/Datasets/

• mq2008:

https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/

• oil-spill:

https://github.com/jbrownlee/Datasets/

• phoneme:

https://github.com/jbrownlee/Datasets/

• sonar:

https://github.com/jbrownlee/Datasets/

• taiwan:

https://archive.ics.uci.edu/ml/machine-learning-databases/00350

Pre-processing mainly involved converting categorical variables to binary dummies and scaling labels to {0, 1}.
Scripts are included in src/data/ to both download and process all the datasets above.

Some datasets are made available as a single file containing all observations, while some datasets are split into
more than one file. To ease processing and to simplify the data acquisition pipeline, only a single sample from
datasets split across several files was considered.

https://archive.ics.uci.edu/ml/machine-learning-databases/housing
https://github.com/jbrownlee/Datasets/
https://github.com/jbrownlee/Datasets/
https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/
https://github.com/jbrownlee/Datasets/
https://github.com/jbrownlee/Datasets/
https://github.com/jbrownlee/Datasets/
https://archive.ics.uci.edu/ml/machine-learning-databases/00350
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E Running time measurements

Dataset E.B. (AUC) RankBoost E.B. (KS) DMKS E.B. (P@k) TopPush

a1a 2.28s 127.52s 2.45s 251.95s 1.67s 1.37s
german 0.53s 12.80s 0.67s 0.86s 0.53s 1.54s
gisette 336.83s OOT 355.37s 19786.38s 281.20s 6.39s
gmsc 40.55s OOT 40.84s 934.80s 21.95s 1.73s
heart 0.32s 1.05s 0.29s 5.46s 0.28s 1.46s

ionosphere 0.71s 2.83s 0.65s 2.26s 0.52s 1.39s
liver-disorders 0.12s 0.23s 0.12s 0.79s 0.11s 1.35s

oil-spill 0.90s 5.32s 0.84s 6.68s 0.70s 1.54s
splice 1.17s 58.46s 1.31s 1.57s 1.14s 1.37s

svmguide1 0.42s 91.94s 0.47s 0.89s 0.33s 1.40s
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F Hyperparameters

All surrogate-based models were trained with fixed hyperparameters, set to be the default values provided by
their corresponding packages — Scikit-learn (version 0.22.1) for AdaBoost, kNN, Logistic and Random Forest;
XGBoost (version 1.0.2) for gradient boosting and TensorFlow (version 2.2.0) for the neural network.

AdaBoost The base estimator was set to be a decision tree with depth of 1; the number of estimators was set
to 50; learning rate set to 1 and the default algorithm is SAMME.R.

kNN The model was trained with 5 neighbors and uniform weights; the distance metric used for the tree was
the Minkowski metric with power 2; the package decides which algorithm to use automatically, with leaf size 30
passed to BallTree or KDTree.

Logistic Regression The penalty norm used was L2; the model was solved in primal formulation; tolerance is
set to 0.0001; the (inverse) of regularization strength is set to 1; the model fits an intercept constant and uses no
class weights; the solver was set to lbfgs with 100 maximum iterations.

Neural Network The neural network had four fully connected layers, the first three with relu activation
functions and the last with a sigmoid activation function. The number of output units were 26, 12, 12 and 1,
respectively. The model was trained with the Adam optimizer for the binary cross-entropy loss; the number of
epochs was set to 30 and batch size to 4.

Random Forest The model was trained with 100 estimator using the Gini criterion; in the default settings,
nodes are expanded until leaves are pure or until all leaves have less than 2 samples; the minimum number of
samples in each leaf is 1; the trees have an unlimited number of nodes; the maximum number of features is set to√
p, where p is the number of features; the trees are built using bootstrapped samples but out-of-bag samples are

not used to estimate the score; both classes have the same weight.

XGBoost The model used a tree booster with learning rate set to 0.3; trees had maximum depth of 6; the
minimum loss required to make a partition in a leaf was set to 0; no subsampling was used in each boosting
iteration; the L2 regularization term on weights was set to 1 and the L1 regularization term set to 0; the tree
construction algorithm was automatically chosen by the package.

As for the exact benchmarks, the implementations of RankBoost and TopPush used were publicly available.

RankBoost The number of rounds was set to 100.

TopPush The regularization parameter λ was set to 0.001.

DMKS The model uses the normalized coefficients obtained in the logistic regression as a starting point to
optimize the KS loss. Weights were also all set to 1.
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G Evaluation results: AUC, KS and P@k

Dataset ExactBoost AdaBoost kNN Logistic Neural Net Rand. For. XGBoost RankBoost

a1a 0.11 ± 0.03 0.13± 0.04 0.18± 0.03 0.11 ± 0.03 0.15± 0.03 0.13± 0.03 0.13± 0.03 0.13± 0.04
australian 0.06 ± 0.02 0.09± 0.01 0.27± 0.01 0.12± 0.03 0.18± 0.03 0.07± 0.01 0.07± 0.02 0.10± 0.01
banknote 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

breast-cancer 0.01 ± 0.01 0.01 ± 0.01 0.43± 0.04 0.43± 0.03 0.38± 0.11 0.01 ± 0.00 0.01 ± 0.01 0.01 ± 0.01
cod-rna 0.14± 0.01 0.02± 0.00 0.06± 0.00 0.02± 0.00 0.02± 0.00 0.01 ± 0.00 0.01 ± 0.00 OOT1

colon-cancer 0.24± 0.09 0.14± 0.10 0.13± 0.07 0.17± 0.16 0.14± 0.12 0.11 ± 0.10 0.15± 0.16 0.13± 0.14
covtype 0.21± 0.00 0.16± 0.00 0.00 ± 0.00 0.34± 0.00 0.29± 0.17 0.01± 0.00 0.05± 0.00 OOM2

cskaggle 0.30± 0.00 0.26 ± 0.00 0.45± 0.00 0.37± 0.00 0.50± 0.00 0.29± 0.00 0.26 ± 0.00 OOM
diabetes 0.18± 0.01 0.20± 0.03 0.25± 0.04 0.17 ± 0.02 0.28± 0.03 0.18± 0.02 0.21± 0.02 0.20± 0.03
fourclass 0.11± 0.04 0.04± 0.01 0.00 ± 0.00 0.17± 0.03 0.17± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.04± 0.01
german 0.23± 0.02 0.24± 0.01 0.42± 0.03 0.23± 0.02 0.39± 0.11 0.22 ± 0.03 0.23± 0.03 0.24± 0.01
gisette 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.00 ± 0.00 0.01± 0.00 0.00 ± 0.00 0.00 ± 0.00 OOT
gmsc 0.21± 0.01 0.14 ± 0.00 0.43± 0.00 0.32± 0.01 0.42± 0.05 0.16± 0.00 0.14 ± 0.00 OOT
heart 0.09 ± 0.03 0.16± 0.07 0.30± 0.03 0.09 ± 0.02 0.10± 0.02 0.11± 0.02 0.12± 0.03 0.13± 0.03

housing 0.14± 0.04 0.25± 0.08 0.23± 0.05 0.19± 0.03 0.31± 0.05 0.10 ± 0.03 0.11± 0.04 0.24± 0.07
ijcnn1 0.10± 0.01 0.05± 0.00 0.03± 0.00 0.07± 0.00 0.00 ± 0.00 0.01± 0.00 0.00 ± 0.00 OOT

ionosphere 0.04± 0.02 0.05± 0.02 0.09± 0.05 0.09± 0.04 0.04± 0.02 0.02 ± 0.02 0.03± 0.01 0.04± 0.02
liver-disorders 0.22 ± 0.06 0.33± 0.07 0.29± 0.13 0.24± 0.08 0.34± 0.08 0.24± 0.13 0.27± 0.17 0.32± 0.08

madelon 0.35± 0.02 0.36± 0.02 0.23± 0.03 0.44± 0.03 0.50± 0.00 0.24± 0.02 0.14 ± 0.01 0.36± 0.02
mammography 0.07± 0.02 0.07± 0.02 0.11± 0.01 0.08± 0.02 0.05 ± 0.01 0.06± 0.02 0.06± 0.02 0.07± 0.02

mq2008 0.21± 0.01 0.18± 0.00 0.29± 0.01 0.22± 0.01 0.22± 0.01 0.13 ± 0.01 0.13 ± 0.01 0.17± 0.01
oil-spill 0.09± 0.09 0.14± 0.10 0.32± 0.11 0.29± 0.10 0.50± 0.09 0.09± 0.06 0.07 ± 0.06 0.09± 0.08
phishing 0.02± 0.00 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01± 0.00
phoneme 0.17± 0.02 0.11± 0.01 0.07± 0.01 0.19± 0.02 0.09± 0.01 0.04 ± 0.01 0.05± 0.01 0.11± 0.01

skin-nonskin 0.01± 0.00 0.02± 0.00 0.00 ± 0.00 0.05± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 OOM
sonar 0.08± 0.03 0.12± 0.03 0.11± 0.04 0.14± 0.04 0.09± 0.04 0.05 ± 0.02 0.05 ± 0.03 0.10± 0.02
splice 0.04± 0.01 0.03± 0.00 0.18± 0.02 0.12± 0.03 0.09± 0.02 0.01 ± 0.00 0.01 ± 0.00 0.02± 0.00

svmguide1 0.01± 0.00 0.01± 0.00 0.02± 0.00 0.01± 0.00 0.01± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
svmguide3 0.19± 0.02 0.16± 0.02 0.24± 0.04 0.24± 0.03 0.18± 0.03 0.13± 0.02 0.12 ± 0.02 0.14± 0.02

taiwan 0.27± 0.00 0.23 ± 0.01 0.40± 0.00 0.36± 0.01 0.50± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.01
w1a 0.12± 0.05 0.15± 0.05 0.24± 0.04 0.08± 0.02 0.15± 0.04 0.07 ± 0.03 0.13± 0.07 0.12± 0.04

Table 6: Evaluation of estimators with AUC as metric

Dataset ExactBoost AdaBoost kNN Logistic Neural Net Rand. For. XGBoost RankBoost

a1a 0.13 ± 0.04 0.17± 0.05 0.18± 0.06 0.14± 0.05 0.15± 0.05 0.27± 0.07 0.28± 0.06 0.16± 0.05
australian 0.07 ± 0.02 0.11± 0.03 0.33± 0.04 0.12± 0.03 0.21± 0.04 0.14± 0.03 0.15± 0.03 0.11± 0.03
banknote 0.00 ± 0.00 0.01± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01± 0.01 0.00 ± 0.00

breast-cancer 0.01 ± 0.00 0.02± 0.02 0.44± 0.04 0.26± 0.20 0.49± 0.06 0.03± 0.02 0.04± 0.01 0.02± 0.01
cod-rna 0.01 ± 0.00 0.01 ± 0.00 0.04± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.03± 0.00 0.04± 0.00 0.01 ± 0.00

colon-cancer 0.48± 0.21 0.42± 0.07 0.29± 0.09 0.26 ± 0.17 0.31± 0.12 0.43± 0.04 0.34± 0.12 0.26 ± 0.18
covtype 0.00 ± 0.00 0.00 ± 0.00 0.02± 0.00 0.16± 0.08 0.00 ± 0.00 0.02± 0.00 0.02± 0.00 OOM
cskaggle 0.27± 0.00 0.26 ± 0.00 0.46± 0.00 0.37± 0.01 0.50± 0.00 0.50± 0.00 0.48± 0.00 OOM
diabetes 0.19 ± 0.03 0.25± 0.06 0.28± 0.04 0.21± 0.02 0.37± 0.05 0.30± 0.04 0.32± 0.05 0.24± 0.05
fourclass 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.03± 0.02 0.01± 0.01 0.00 ± 0.00 0.00 ± 0.00
german 0.23 ± 0.03 0.32± 0.05 0.45± 0.06 0.24± 0.04 0.50± 0.07 0.33± 0.02 0.35± 0.03 0.30± 0.06
gisette 0.00 ± 0.00 0.01± 0.00 0.02± 0.00 0.01± 0.00 0.01± 0.00 0.03± 0.00 0.02± 0.00 0.01± 0.00
gmsc 0.15± 0.01 0.14 ± 0.00 0.45± 0.00 0.31± 0.01 0.46± 0.01 0.42± 0.02 0.41± 0.01 0.15± 0.00
heart 0.12 ± 0.03 0.18± 0.06 0.34± 0.06 0.12 ± 0.03 0.23± 0.07 0.19± 0.04 0.23± 0.06 0.15± 0.05

housing 0.15 ± 0.04 0.25± 0.15 0.42± 0.07 0.29± 0.09 0.37± 0.09 0.46± 0.06 0.44± 0.06 0.24± 0.10
ijcnn1 0.00 ± 0.00 0.00 ± 0.00 0.02± 0.00 0.00 ± 0.00 0.01± 0.00 0.03± 0.00 0.03± 0.00 0.00 ± 0.00

ionosphere 0.04 ± 0.03 0.05± 0.03 0.12± 0.04 0.07± 0.04 0.07± 0.05 0.07± 0.03 0.09± 0.03 0.05± 0.04
liver-disorders 0.30 ± 0.11 0.34± 0.10 0.37± 0.11 0.34± 0.08 0.34± 0.08 0.38± 0.04 0.38± 0.02 0.38± 0.10

madelon 0.16 ± 0.02 0.24± 0.03 0.28± 0.01 0.46± 0.03 0.50± 0.01 0.29± 0.02 0.23± 0.01 0.22± 0.02
mammography 0.05 ± 0.02 0.07± 0.02 0.13± 0.02 0.06± 0.02 0.08± 0.03 0.19± 0.02 0.19± 0.03 0.07± 0.03

mq2008 0.13 ± 0.01 0.15± 0.01 0.34± 0.01 0.22± 0.01 0.28± 0.00 0.29± 0.01 0.29± 0.01 0.15± 0.01
oil-spill 0.17 ± 0.12 0.19± 0.11 0.41± 0.08 0.29± 0.19 0.46± 0.09 0.38± 0.09 0.35± 0.17 0.19± 0.13
phishing 0.00 ± 0.00 0.01± 0.00 0.01± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.03± 0.00 0.03± 0.01 0.01± 0.00
phoneme 0.04 ± 0.01 0.05± 0.01 0.08± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.12± 0.02 0.13± 0.01 0.05± 0.01

skin-nonskin 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 OOM
sonar 0.09± 0.03 0.19± 0.09 0.09± 0.03 0.06 ± 0.02 0.08± 0.02 0.17± 0.03 0.18± 0.03 0.18± 0.11
splice 0.01 ± 0.00 0.01 ± 0.01 0.16± 0.03 0.08± 0.01 0.05± 0.01 0.04± 0.01 0.04± 0.02 0.02± 0.01

svmguide1 0.00 ± 0.00 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.03± 0.00 0.04± 0.00 0.01± 0.00
svmguide3 0.15± 0.02 0.21± 0.04 0.21± 0.04 0.14 ± 0.03 0.16± 0.03 0.27± 0.03 0.28± 0.04 0.20± 0.02

taiwan 0.23 ± 0.01 0.24± 0.01 0.41± 0.01 0.36± 0.01 0.50± 0.00 0.34± 0.01 0.35± 0.01 0.24± 0.00
w1a 0.11 ± 0.03 0.15± 0.03 0.27± 0.06 0.11 ± 0.04 0.20± 0.05 0.37± 0.06 0.27± 0.05 0.13± 0.06

Table 7: Evaluation of ensemblers with AUC as metric
1OOT (out-of-time): the budget time of 5 days was exceeded.
2OOM (out-of-memory): 810GB of RAM were exceeded.
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Dataset ExactBoost AdaBoost kNN Logistic Neural Net Rand. For. XGBoost DMKS

a1a 0.37± 0.05 0.37± 0.06 0.46± 0.05 0.36 ± 0.05 0.43± 0.04 0.39± 0.06 0.40± 0.06 0.37± 0.05
australian 0.24± 0.04 0.29± 0.03 0.62± 0.03 0.33± 0.07 0.42± 0.07 0.25± 0.04 0.23 ± 0.04 0.27± 0.06
banknote 0.06± 0.02 0.01± 0.01 0.00 ± 0.00 0.01± 0.01 0.00 ± 0.00 0.01± 0.01 0.01± 0.01 0.01± 0.01

breast-cancer 0.03 ± 0.01 0.06± 0.02 0.86± 0.04 0.83± 0.03 0.69± 0.23 0.03 ± 0.02 0.04± 0.03 0.40± 0.04
cod-rna 0.51± 0.01 0.12± 0.01 0.20± 0.01 0.12± 0.00 0.12± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.12± 0.00

colon-cancer 0.39± 0.22 0.28± 0.20 0.24± 0.13 0.23± 0.22 0.24± 0.22 0.22 ± 0.21 0.22 ± 0.22 0.46± 0.26
covtype 0.52± 0.00 0.47± 0.00 0.05 ± 0.00 0.75± 0.01 0.66± 0.28 0.07± 0.00 0.25± 0.00 0.50± 0.01
cskaggle 0.68± 0.00 0.64 ± 0.01 0.90± 0.01 0.80± 0.01 1.00± 0.00 0.69± 0.01 0.64 ± 0.00 0.73± 0.01
diabetes 0.46 ± 0.03 0.50± 0.05 0.64± 0.05 0.46 ± 0.04 0.62± 0.07 0.47± 0.03 0.54± 0.04 0.46 ± 0.05
fourclass 0.30± 0.07 0.11± 0.02 0.00 ± 0.00 0.50± 0.04 0.47± 0.07 0.00 ± 0.01 0.01± 0.01 0.49± 0.04
german 0.53 ± 0.05 0.54± 0.02 0.86± 0.03 0.54± 0.03 0.76± 0.11 0.53 ± 0.06 0.55± 0.05 0.55± 0.05
gisette 0.09± 0.01 0.08± 0.01 0.07± 0.01 0.05± 0.01 0.05± 0.01 0.05± 0.01 0.04 ± 0.00 0.06± 0.01
gmsc 0.44 ± 0.00 0.44 ± 0.01 0.87± 0.00 0.74± 0.02 0.87± 0.09 0.46± 0.00 0.44 ± 0.01 0.45± 0.01
heart 0.30± 0.05 0.35± 0.09 0.66± 0.04 0.28 ± 0.04 0.30± 0.06 0.32± 0.07 0.33± 0.09 0.28 ± 0.04

housing 0.25± 0.03 0.48± 0.15 0.50± 0.12 0.37± 0.06 0.56± 0.04 0.20 ± 0.08 0.27± 0.10 0.36± 0.10
ijcnn1 0.30± 0.01 0.21± 0.01 0.10± 0.00 0.27± 0.02 0.04 ± 0.00 0.07± 0.01 0.05± 0.00 0.25± 0.01

ionosphere 0.13± 0.04 0.14± 0.08 0.21± 0.08 0.26± 0.06 0.14± 0.06 0.12 ± 0.05 0.12 ± 0.04 0.28± 0.04
liver-disorders 0.45 ± 0.09 0.56± 0.10 0.61± 0.21 0.50± 0.10 0.58± 0.12 0.47± 0.18 0.46± 0.25 0.50± 0.10

madelon 0.71± 0.03 0.77± 0.04 0.59± 0.06 0.87± 0.05 1.00± 0.00 0.60± 0.05 0.41 ± 0.03 0.87± 0.05
mammography 0.20± 0.04 0.21± 0.04 0.23± 0.02 0.20± 0.04 0.15 ± 0.02 0.18± 0.01 0.18± 0.02 0.19± 0.04

mq2008 0.57± 0.01 0.50± 0.01 0.68± 0.02 0.58± 0.02 0.56± 0.03 0.41± 0.01 0.40 ± 0.02 0.58± 0.01
oil-spill 0.25± 0.10 0.31± 0.17 0.64± 0.22 0.53± 0.14 0.88± 0.10 0.27± 0.14 0.18 ± 0.11 0.45± 0.14
phishing 0.14± 0.01 0.12± 0.01 0.09± 0.01 0.12± 0.01 0.07± 0.01 0.05 ± 0.01 0.06± 0.00 0.11± 0.01
phoneme 0.45± 0.03 0.35± 0.02 0.27± 0.02 0.48± 0.02 0.32± 0.03 0.19 ± 0.02 0.22± 0.02 0.45± 0.02

skin-nonskin 0.04± 0.00 0.06± 0.00 0.00 ± 0.00 0.10± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.09± 0.00
sonar 0.32± 0.04 0.29± 0.07 0.37± 0.09 0.32± 0.06 0.23± 0.10 0.22± 0.04 0.15 ± 0.07 0.33± 0.06
splice 0.16± 0.01 0.14± 0.01 0.47± 0.04 0.37± 0.06 0.31± 0.03 0.06 ± 0.02 0.07± 0.02 0.36± 0.05

svmguide1 0.06 ± 0.00 0.06 ± 0.01 0.07± 0.01 0.09± 0.01 0.07± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.09± 0.01
svmguide3 0.50± 0.03 0.43± 0.04 0.60± 0.06 0.53± 0.05 0.48± 0.05 0.41± 0.05 0.36 ± 0.05 0.53± 0.06

taiwan 0.59± 0.01 0.58 ± 0.01 0.86± 0.01 0.78± 0.01 1.00± 0.00 0.59± 0.01 0.59± 0.00 0.62± 0.01
w1a 0.30± 0.11 0.39± 0.09 0.48± 0.07 0.26± 0.07 0.41± 0.08 0.24 ± 0.08 0.36± 0.13 0.59± 0.09

Table 8: Evaluation of estimators with KS as metric

Dataset ExactBoost AdaBoost kNN Logistic Neural Net Rand. For. XGBoost DMKS

a1a 0.37 ± 0.07 0.44± 0.09 0.48± 0.09 0.40± 0.09 0.41± 0.09 0.54± 0.13 0.57± 0.12 0.49± 0.08
australian 0.22 ± 0.03 0.28± 0.05 0.70± 0.07 0.34± 0.04 0.48± 0.06 0.29± 0.05 0.30± 0.07 0.30± 0.05
banknote 0.00 ± 0.00 0.02± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01± 0.01 0.00 ± 0.00

breast-cancer 0.03 ± 0.03 0.06± 0.05 0.86± 0.06 0.52± 0.37 0.94± 0.12 0.07± 0.04 0.08± 0.02 0.43± 0.36
cod-rna 0.07 ± 0.00 0.07 ± 0.00 0.16± 0.01 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.00

colon-cancer 0.78± 0.23 0.83± 0.14 0.62± 0.16 0.41 ± 0.25 0.48± 0.15 0.85± 0.08 0.69± 0.24 0.65± 0.28
covtype 0.05± 0.00 0.04 ± 0.00 0.15± 0.00 0.45± 0.16 0.05± 0.00 0.04 ± 0.00 0.05± 0.00 0.05± 0.00
cskaggle 0.64 ± 0.00 0.64 ± 0.01 0.92± 0.01 0.80± 0.01 1.00± 0.00 0.99± 0.00 0.97± 0.01 0.70± 0.02
diabetes 0.47 ± 0.05 0.56± 0.08 0.65± 0.08 0.52± 0.03 0.72± 0.07 0.61± 0.08 0.63± 0.09 0.51± 0.02
fourclass 0.00 ± 0.00 0.00 ± 0.00 0.03± 0.01 0.00 ± 0.00 0.12± 0.09 0.01± 0.01 0.00 ± 0.01 0.00 ± 0.01
german 0.50 ± 0.06 0.68± 0.07 0.90± 0.07 0.53± 0.07 0.89± 0.08 0.66± 0.04 0.69± 0.06 0.53± 0.06
gisette 0.04 ± 0.01 0.04 ± 0.01 0.11± 0.01 0.07± 0.01 0.07± 0.00 0.06± 0.01 0.04 ± 0.01 0.10± 0.02
gmsc 0.43 ± 0.01 0.44± 0.01 0.90± 0.00 0.73± 0.02 0.95± 0.01 0.85± 0.04 0.83± 0.02 0.46± 0.00
heart 0.34 ± 0.06 0.38± 0.07 0.70± 0.10 0.37± 0.07 0.52± 0.13 0.38± 0.07 0.46± 0.12 0.40± 0.05

housing 0.30 ± 0.04 0.42± 0.22 0.82± 0.12 0.54± 0.13 0.59± 0.11 0.91± 0.11 0.88± 0.11 0.55± 0.13
ijcnn1 0.04 ± 0.00 0.05± 0.00 0.05± 0.00 0.04 ± 0.01 0.05± 0.01 0.06± 0.01 0.07± 0.01 0.04 ± 0.01

ionosphere 0.13 ± 0.07 0.18± 0.07 0.27± 0.10 0.18± 0.07 0.17± 0.07 0.15± 0.06 0.19± 0.06 0.27± 0.11
liver-disorders 0.53 ± 0.12 0.60± 0.17 0.72± 0.12 0.59± 0.17 0.61± 0.09 0.76± 0.07 0.76± 0.04 0.60± 0.17

madelon 0.43 ± 0.03 0.55± 0.05 0.66± 0.02 0.91± 0.03 0.98± 0.04 0.58± 0.04 0.46± 0.02 0.95± 0.05
mammography 0.16 ± 0.02 0.19± 0.02 0.27± 0.03 0.19± 0.04 0.20± 0.03 0.39± 0.05 0.38± 0.06 0.21± 0.04

mq2008 0.40 ± 0.01 0.45± 0.01 0.74± 0.02 0.59± 0.02 0.61± 0.01 0.58± 0.02 0.58± 0.02 0.47± 0.02
oil-spill 0.33 ± 0.18 0.33 ± 0.17 0.81± 0.11 0.47± 0.23 0.89± 0.14 0.76± 0.17 0.69± 0.33 0.63± 0.29
phishing 0.05 ± 0.01 0.06± 0.01 0.06± 0.01 0.05 ± 0.01 0.06± 0.01 0.06± 0.01 0.07± 0.01 0.05 ± 0.01
phoneme 0.20 ± 0.02 0.23± 0.03 0.26± 0.03 0.20 ± 0.02 0.20 ± 0.02 0.25± 0.03 0.27± 0.03 0.20 ± 0.02

skin-nonskin 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
sonar 0.27± 0.05 0.35± 0.11 0.29± 0.03 0.20 ± 0.03 0.20 ± 0.06 0.34± 0.05 0.37± 0.05 0.22± 0.02
splice 0.06 ± 0.02 0.09± 0.02 0.46± 0.06 0.28± 0.03 0.21± 0.04 0.09± 0.02 0.09± 0.03 0.28± 0.03

svmguide1 0.06 ± 0.00 0.08± 0.02 0.08± 0.01 0.06 ± 0.01 0.06 ± 0.00 0.07± 0.00 0.07± 0.01 0.06 ± 0.01
svmguide3 0.41± 0.02 0.52± 0.07 0.52± 0.09 0.36 ± 0.05 0.40± 0.03 0.55± 0.05 0.56± 0.07 0.38± 0.04

taiwan 0.57 ± 0.01 0.60± 0.02 0.86± 0.01 0.78± 0.01 1.00± 0.00 0.68± 0.01 0.71± 0.01 0.63± 0.01
w1a 0.30 ± 0.07 0.38± 0.04 0.54± 0.12 0.30 ± 0.09 0.45± 0.08 0.74± 0.12 0.54± 0.09 0.75± 0.10

Table 9: Evaluation of ensemblers with KS as metric
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Dataset ExactBoost AdaBoost kNN Logistic Neural Net Rand. For. XGBoost TopPush

a1a 0.26± 0.11 0.23± 0.09 0.30± 0.09 0.24± 0.10 0.28± 0.13 0.22 ± 0.09 0.24± 0.13 0.29± 0.10
australian 0.04 ± 0.03 0.06± 0.04 0.23± 0.07 0.08± 0.05 0.14± 0.07 0.04 ± 0.05 0.05± 0.03 0.19± 0.10
banknote 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

breast-cancer 0.01 ± 0.02 0.01 ± 0.02 0.58± 0.07 0.60± 0.11 0.55± 0.10 0.01 ± 0.02 0.01 ± 0.02 0.59± 0.10
cod-rna 0.28± 0.01 0.05± 0.00 0.06± 0.00 0.05± 0.00 0.05± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.79± 0.31

colon-cancer 0.20 ± 0.16 0.20 ± 0.16 0.27± 0.13 0.27± 0.25 0.27± 0.25 0.20 ± 0.27 0.27± 0.25 0.20 ± 0.16
covtype 0.22± 0.00 0.16± 0.00 0.00 ± 0.00 0.38± 0.00 0.31± 0.17 0.00 ± 0.00 0.02± 0.00 0.49± 0.05
cskaggle 0.75± 0.01 0.68± 0.01 0.87± 0.01 0.84± 0.01 0.92± 0.00 0.70± 0.01 0.67 ± 0.01 0.92± 0.01
diabetes 0.24± 0.09 0.28± 0.06 0.24± 0.11 0.20 ± 0.06 0.36± 0.07 0.23± 0.07 0.25± 0.05 0.52± 0.27
fourclass 0.12± 0.04 0.09± 0.06 0.00 ± 0.00 0.11± 0.03 0.10± 0.07 0.00 ± 0.00 0.01± 0.01 0.35± 0.32
german 0.11± 0.02 0.12± 0.03 0.23± 0.02 0.12± 0.03 0.23± 0.10 0.09 ± 0.02 0.11± 0.03 0.26± 0.06
gisette 0.02± 0.01 0.00 ± 0.00 0.01± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01± 0.00
gmsc 0.52± 0.01 0.48 ± 0.01 0.83± 0.01 0.76± 0.06 0.83± 0.08 0.50± 0.01 0.48 ± 0.01 0.96± 0.00
heart 0.04 ± 0.06 0.13± 0.05 0.24± 0.10 0.04 ± 0.06 0.07± 0.08 0.04 ± 0.06 0.07± 0.05 0.13± 0.07

housing 0.80± 0.19 0.80± 0.19 0.70± 0.19 0.90± 0.20 0.95± 0.10 0.70± 0.10 0.65 ± 0.12 0.95± 0.10
ijcnn1 0.24± 0.02 0.20± 0.01 0.01± 0.00 0.29± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.80± 0.03

ionosphere 0.03± 0.02 0.03± 0.03 0.11± 0.07 0.07± 0.07 0.02± 0.02 0.01 ± 0.02 0.02± 0.02 0.15± 0.07
liver-disorders 0.23± 0.13 0.33± 0.11 0.43± 0.13 0.30± 0.19 0.33± 0.24 0.20 ± 0.19 0.23± 0.17 0.47± 0.19

madelon 0.33± 0.01 0.33± 0.06 0.16± 0.05 0.42± 0.07 0.49± 0.06 0.17± 0.03 0.10 ± 0.01 0.44± 0.05
mammography 0.21± 0.07 0.17± 0.04 0.12± 0.03 0.25± 0.07 0.10± 0.07 0.07 ± 0.04 0.08± 0.06 0.53± 0.21

mq2008 0.43± 0.02 0.39± 0.01 0.51± 0.01 0.46± 0.03 0.47± 0.07 0.24 ± 0.01 0.25± 0.01 0.83± 0.06
oil-spill 0.52± 0.27 0.52± 0.24 0.80± 0.18 0.72± 0.16 0.92± 0.16 0.44 ± 0.27 0.48± 0.24 0.96± 0.08
phishing 0.01± 0.00 0.00 ± 0.00 0.01± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
phoneme 0.33± 0.03 0.19± 0.02 0.06± 0.01 0.43± 0.03 0.13± 0.02 0.03 ± 0.01 0.06± 0.02 0.73± 0.15

skin-nonskin 0.01± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
sonar 0.06± 0.08 0.10± 0.09 0.10± 0.09 0.06± 0.05 0.02 ± 0.04 0.04± 0.05 0.04± 0.08 0.04± 0.05
splice 0.03± 0.02 0.02± 0.02 0.19± 0.04 0.11± 0.06 0.07± 0.05 0.00 ± 0.01 0.01± 0.01 0.12± 0.05

svmguide1 0.00 ± 0.00 0.00 ± 0.01 0.02± 0.01 0.01± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
svmguide3 0.27± 0.08 0.19± 0.06 0.28± 0.06 0.30± 0.09 0.23± 0.08 0.17 ± 0.07 0.17 ± 0.07 0.54± 0.16

taiwan 0.39± 0.01 0.33 ± 0.02 0.65± 0.01 0.65± 0.02 0.79± 0.01 0.33 ± 0.01 0.34± 0.01 0.64± 0.06
w1a 0.25± 0.11 0.40± 0.20 0.42± 0.06 0.32± 0.17 0.32± 0.17 0.25± 0.14 0.38± 0.14 0.18 ± 0.10

Table 10: Evaluation of estimators with P@k as metric

Dataset ExactBoost AdaBoost kNN Logistic Neural Net Rand. For. XGBoost TopPush

a1a 0.22 ± 0.12 0.34± 0.09 0.28± 0.14 0.28± 0.14 0.32± 0.12 0.34± 0.15 0.40± 0.10 0.29± 0.09
australian 0.05 ± 0.03 0.10± 0.04 0.37± 0.11 0.07± 0.06 0.17± 0.08 0.14± 0.08 0.14± 0.07 0.06± 0.03
banknote 0.00 ± 0.00 0.02± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01± 0.02 0.00 ± 0.00

breast-cancer 0.02± 0.03 0.01 ± 0.02 0.58± 0.05 0.32± 0.23 0.63± 0.09 0.07± 0.04 0.04± 0.03 0.60± 0.14
cod-rna 0.04± 0.00 0.01 ± 0.00 0.07± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.07± 0.01 0.07± 0.01 0.16± 0.19

colon-cancer 0.60± 0.33 0.40 ± 0.33 0.40 ± 0.25 0.40 ± 0.25 0.40 ± 0.13 0.47± 0.27 0.40 ± 0.13 0.40 ± 0.13
covtype 0.02± 0.00 0.00 ± 0.00 0.01± 0.00 0.17± 0.08 0.00 ± 0.00 0.02± 0.00 0.02± 0.00 0.27± 0.13
cskaggle 0.69± 0.01 0.68 ± 0.01 0.87± 0.01 0.84± 0.00 0.92± 0.00 0.90± 0.01 0.86± 0.01 0.92± 0.02
diabetes 0.21 ± 0.08 0.36± 0.15 0.39± 0.06 0.25± 0.10 0.47± 0.04 0.34± 0.13 0.36± 0.09 0.28± 0.11
fourclass 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02± 0.04 0.00 ± 0.00 0.00 ± 0.00
german 0.13 ± 0.04 0.16± 0.07 0.26± 0.04 0.13 ± 0.04 0.33± 0.05 0.20± 0.05 0.21± 0.06 0.18± 0.03
gisette 0.01± 0.00 0.01± 0.00 0.01± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.02± 0.01 0.02± 0.01 0.01± 0.01
gmsc 0.51± 0.02 0.48 ± 0.01 0.85± 0.01 0.74± 0.06 0.88± 0.03 0.65± 0.07 0.62± 0.04 0.96± 0.01
heart 0.07± 0.08 0.19± 0.09 0.33± 0.11 0.06 ± 0.05 0.19± 0.07 0.23± 0.08 0.29± 0.10 0.14± 0.15

housing 0.65 ± 0.25 0.70± 0.10 0.85± 0.12 0.75± 0.16 0.85± 0.20 0.75± 0.22 0.75± 0.22 0.65 ± 0.20
ijcnn1 0.01± 0.00 0.00 ± 0.00 0.01± 0.00 0.00 ± 0.00 0.01± 0.01 0.05± 0.01 0.06± 0.01 0.00 ± 0.00

ionosphere 0.03 ± 0.03 0.04± 0.09 0.13± 0.04 0.05± 0.05 0.06± 0.06 0.09± 0.07 0.10± 0.06 0.10± 0.06
liver-disorders 0.27 ± 0.23 0.33± 0.18 0.40± 0.23 0.33± 0.21 0.40± 0.27 0.40± 0.25 0.33± 0.21 0.30± 0.24

madelon 0.14 ± 0.05 0.22± 0.03 0.24± 0.06 0.45± 0.04 0.48± 0.05 0.30± 0.06 0.26± 0.03 0.46± 0.04
mammography 0.09 ± 0.04 0.13± 0.08 0.14± 0.04 0.13± 0.06 0.12± 0.04 0.17± 0.04 0.25± 0.06 0.23± 0.13

mq2008 0.31± 0.01 0.29 ± 0.01 0.60± 0.02 0.47± 0.03 0.66± 0.03 0.30± 0.04 0.38± 0.02 0.85± 0.07
oil-spill 0.44 ± 0.23 0.72± 0.20 0.88± 0.16 0.84± 0.15 0.92± 0.10 0.72± 0.16 0.68± 0.27 0.68± 0.24
phishing 0.00 ± 0.00 0.00 ± 0.00 0.01± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.03± 0.01 0.03± 0.01 0.00 ± 0.00
phoneme 0.07± 0.02 0.05± 0.02 0.07± 0.02 0.04 ± 0.01 0.06± 0.01 0.16± 0.04 0.17± 0.03 0.05± 0.02

skin-nonskin 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
sonar 0.02 ± 0.04 0.24± 0.21 0.06± 0.08 0.02 ± 0.04 0.04± 0.05 0.16± 0.10 0.18± 0.04 0.02 ± 0.04
splice 0.01 ± 0.01 0.01 ± 0.01 0.16± 0.01 0.04± 0.02 0.04± 0.01 0.05± 0.03 0.05± 0.02 0.05± 0.03

svmguide1 0.00 ± 0.00 0.01± 0.00 0.01± 0.01 0.00 ± 0.00 0.01± 0.01 0.05± 0.02 0.05± 0.01 0.00 ± 0.00
svmguide3 0.21± 0.06 0.25± 0.12 0.24± 0.09 0.17 ± 0.07 0.17 ± 0.06 0.25± 0.07 0.35± 0.07 0.22± 0.07

taiwan 0.37± 0.00 0.35 ± 0.02 0.65± 0.01 0.65± 0.02 0.79± 0.01 0.36± 0.02 0.41± 0.01 0.65± 0.05
w1a 0.25 ± 0.14 0.32± 0.13 0.70± 0.10 0.35± 0.20 0.38± 0.08 0.57± 0.20 0.32± 0.15 0.30± 0.17

Table 11: Evaluation of ensemblers with P@k as metric
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H Visualizing ExactBoost trajectories

This section details how Figure 1 in the paper was generated.

To visualize ExactBoost’s trajectories in 2D, we start by training several ExactBoost models, varying the
hyperparameters used, and each model is represented as a vector in R4ET , with E being the number of runs
averaged and T the number of rounds. We then run denseMAP McInnes and Healy (2018) on these vectors
in order to reduce their dimensions from R4ET to R2. Note that this usage of UMAP ensures that, with high
probability, similar trajectories (and similar trained ExactBoosts) are plotted close to each other. Finally, we plot
these points using hexbins, colored with the value of the losses of their corresponding model.

In order to transform a trained model into a vector, we start with a vector v = 0 ∈ R4ET . If we want to represent
a model which has m < T rounds, we act as if it was trained for T rounds, but with all stumps after round
m being null stumps (i.e., j = ξ = a = b = 0). Then, for each round t and estimator l, we set the positions
v4Tl+4t+0 = jt,l, v4Tl+4t+1 = ξt,l, v4Tl+4t+2 = at,l and v4Tl+4t+3 = bt,l.

Note that generating these landscapes based on trained models gives us a visualization of places where ExactBoost
actually navigates around, omitting points where it is not likely to visit. In order to keep this visualization
reasonably fair, the models are trained both using sets of hyperparameters for which it performs well and others
which can intentionally throw it off-course. This way, we maintain our bias towards points that ExactBoost can
visit, while also illustrating bad minima.

For more details, see the scripts in src/eval/trajectory_plots/ to generate, evaluate, project and plot
landscapes and trajectories.
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Figure 4: KS loss landscape visualizations via UMAP highlighting ExactBoost’s optimization trajectories, which
go from left to right. More averaged runs E lead to better train and test losses.
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