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Introduction
At the core of causal ML is reasoning about potential outcomes 𝑌 𝑎, which cor-
respond to what would happen to the outcome 𝑌  if we were to intervene and
make 𝑇 = 𝑎. This is subtly different from simply predicting which observed
outcome 𝑌  is most likely — correlation is not causation!

Many methods have been proposed for causal ML, but generally with a rather
shaky theoretical background and with heavy assumptions. So which ones ac-
tually, provably work? And which ones are robust to violations of their assump-
tions? In this work, we sought to develop a new backing theory for such meth-
ods based on the formalism of bounds on the generalization error.

Actually important: In causality we can’t just resort to benchmarking because
we fundamentally cannot observe the ground truths. We need theory!

Our goal: introduce generalization bounds for causal regression:

test causal loss ≤ train observable loss + fitting complexity

+ causal penalty + 𝑂(𝑛−1/2).

We consider two key tasks of causal ML:

(i) potential outcome regression, in which we seek to predict the potential
outcomes 𝑌 𝑎 given the covariates 𝑋; and

(ii) individual treatment effect estimation, in which we seek to predict the
treatment effects 𝑌 1 − 𝑌 0 given the covariates 𝑋.

Assumptions
• I.I.D. data (can be relaxed)

(a.k.a. no-interference in the causal inference literature.)

• Consistency (can be relaxed)
Conditional on 𝑇 = 𝑎, it holds that 𝑌 𝑎 = 𝑌 , for all values of 𝑎.

• Ignorability w.r.t. observed and unobserved covariates
(𝑌 1, 𝑌 0) ⟂⟂ 𝑇 | 𝑋, 𝑈.

This is all we need for bounds for estimation of potential outcomes. For bounds
for the estimation of treatment effects we introduce one additional light as-
sumption on the loss function.

From Observable Losses to Causal Losses
First we bound the loss in expectation:

Theorem 2.3. For any loss function, reweighting function 𝑤(𝑋) with
𝔼[𝑤(𝑋)] = 1 and any 𝜆 > 0,

𝔼[Loss]⏟
unobservable...

≤ 𝔼[𝑤(𝑋) ⋅ Loss | 𝑇 = 𝑎]⏟⏟⏟⏟⏟⏟⏟⏟⏟
observable!

+ 𝜆Δ𝑇=𝑎 + 𝜎2
𝑇=𝑎/4𝜆

where

Δ𝑇=𝑎 = 𝔼[(𝑤(𝑋)
ℙ[𝑇 = 𝑎 | 𝑋, 𝑈]

ℙ[𝑇 = 𝑎]
− 1)

2

] and 𝜎2
𝑇=𝑎 = Var[Loss].

Proof sketch. By using a lemma we introduce in the paper, we can tightly bound
the gap between expectations of any two distributions by their 𝜒2 divergence.
Applying it to the distributions of 𝑃Loss and 𝑃Loss | 𝑇=𝑎 gets us to the desired
inequality except for having Δ𝑇=𝑎 = 𝜒2(𝑃𝑌 ,𝑋,𝑈|𝑇=𝑎 ‖ 𝑃𝑌 𝑎,𝑋,𝑈).

Since the 𝜒2 divergence is an 𝑓-divergence, it is a function of the density ra-
tio of its inputs. And indeed, in the causal setting, by consistency and ignor-
ability, we have that d𝑃𝑌 ,𝑋,𝑈|𝑇=𝑎/ d𝑃𝑌 𝑎,𝑋,𝑈 = 𝑤(𝑋)ℙ[𝑇 = 𝑎|𝑋, 𝑈]/ℙ[𝑇 =
𝑎]. Plugging this into the definition of the 𝜒2 divergence concludes the proof. ∎

Unfortunately, Δ𝑇=𝑎 is unknown in practice due to ℙ[𝑇 = 𝑎|𝑋, 𝑈]. But, quite
remarkably, we can bound it in a way we can estimate with no knowledge of 𝑈 :

Theorem 2.4. For Δ𝑇=𝑎 as in Theorem 1,

Δ𝑇=𝑎 ≤
2

ℙ[𝑇 = 𝑎]2
⋅ (𝔼[𝑤2(𝑋) ⋅ (𝜈(𝑋) − 𝟙[𝑇 = 𝑎])2]

+ 𝔼[(𝑤(𝑋)𝟙[𝑇 = 𝑎] − ℙ[𝑇 = 𝑎])2]).

Proof sketch. By adding and subtracting 𝟙[𝑇 = 𝑎]/ℙ[𝑇 = 𝑎] and using a relaxed
triangular inequality, we get the desired inequality except for 𝜈(𝑋) being re-
placed by ℙ[𝑇 = 𝑎|𝑋, 𝑈].

The proof is concluded by noting that the first expectation is a reweighted Brier
loss of ℙ[𝑇 = 𝑎|𝑋, 𝑈] w.r.t. 𝟙[𝑇 = 𝑎], which is optimized precisely for ℙ[𝑇 =
𝑎|𝑋, 𝑈]. Therefore, substituting it for 𝜈(𝑋) keeps the bound valid.  ∎

Generalization Bounds and More
Generalization Bounds for Prediction of Potential Outcomes: We can
combine Theorems 2.3 and 2.4 with generalization bounds for the non-causal
case in order to achieve generalization bounds for causal regression. We give
an example with Rademacher-based bounds, but the same idea applies to other
frameworks (e.g., PAC-Bayes, VC, stability, etc.).

Corollary 2.5. For any loss function bounded in [0, 𝑀] and reweighting
𝑤 as in Theorem 2.3 bounded in [0, 𝑤max], for any 𝜆 > 0, with high prob-
ability, for any model ℎ ∈ ℋ,

test causal loss
⏞⏞⏞⏞⏞𝔼[Loss(ℎ)] ≤

train observable loss
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑛−1

𝑇=𝑎 ∑
𝑇𝑖=𝑎

𝑤(𝑋𝑖)Loss𝑖(ℎ) +
fitting complexity

⏞⏞⏞⏞⏞⏞⏞⏞⏞2ℜ(ℋ) + 2ℜ(ℋ𝜈)

+ 𝜆Δ̂𝑇=𝑎 + 𝑀2/16𝜆⏟⏟⏟⏟⏟⏟⏟
causal penalty

+ 𝑂(𝑀𝑤max ⋅ 𝑛−1/2
𝑇=𝑎 ).

Generalization Bounds for Prediction of Treatment Effects: By introduc-
ing an additional light assumption on the structure of the loss function, we can
separate the loss of treatment effect predictors into losses of individual poten-
tial outcome regressions. We can then leverage the bounds we’ve developed for
these individual regressions along with an union bound to get generalization
bounds for the treatment effect estimation problem. See Section 2.2 of the paper!

Prediction of Treatment Effects Beyond the MSE: One remarkable aspect
of our bounds is that they are loss-agnostic: i.e., they hold not only for the MSE
loss, but also for 0-1 loss (for classification), MAE (for robust regression) and,
most remarkably, for the quantile loss (for quantile regression). This is quite
notable, since it shows that it is possible to estimate conditional quantiles of
treatment effects, contrary to common belief. See Section 2.3 of the paper!

Experiments on Semi-Synthetic Data: We conduct experiments on datasets
of varying complexity, showcasing the remarkable tightness of our bounds. Not
only are they tight (even when there is hidden confounding!), but they are also
orders of magnitude tighter than the closest matching result previously available
in the literature. See Section 3.1 of the paper!

Experiments on Real Data: We futher demonstrate the practical utility of our
bounds by showcasing their effectiveness on a model selection task on tricky
real data full of hidden confounding. See Section 3.2 of the paper!
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