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Summary
In many medical segmentation tasks, it is crucial to provide valid confidence intervals to
machine learning predictions. In the case of segmenting amniotic fluid using fetal MRIs,
this allows doctors to better understand and control the segmentation masks, bound the
fluid volume, and statistically detect anomalies such as cysts. Our goals in this work are:

• Propose and evaluate different ways of creating confidence intervals for segmentation
masks and volume predictions using tools from the field of conformal prediction.

• Show that simple but well-suited modifications of current methods, such as volume
normalization and tuning of a leniency hyperparameter, lead to significant improvements,
resulting in more consistent coverage and narrower confidence sets

These advances are thoroughly illustrated in the amniotic fluid segmentation problem.

New Fetal MRI Dataset
We evaluate 652 fetal MRIs performed by the same fetal radiologist. The gestational age
was between 19 to 38 weeks of gestation. Over 80% of the subjects present some degree
of pathology, which can sometimes be reflected in the resulting exam. The amniotic fluid
(AF) of the MRI scans were manually segmented by two specialists, under the supervision
of a third specialist and the radiologist that performed the exams. Whenever one of
the supervisors disagreed with the segmentation, it was either refined or discarded. For
approved segmentations, the AF was highlighted.

(a) Features: three consecutive 2D slices of an 3D exam.

(b) Target: segmented Amniotic Fluid of the middle slice.

Fig 1: Example of 2D exam slices and its highlighted amniotic fluid.

The end result is a set of pairs (Xi, Yi)
`
i=1 of ` = 652 segmented exams, where Xi is the

3D exam image and Yi is the highlighted AF.

Model Evaluation
The neural network architectures tested were: U-Net, with 17 million parameter; Small
U-Net, 1.9 million parameter; and Fast-SCNN, 1.1 million parameters

The losses considered were Soft Dice and binary cross entropy (BCE). As we observed
that mis-segmentation happens mostly close to the border of AF, the Active Contour (AC)
loss was used in conjunction with BCE.

The results are shown bellow:

Model Soft Dice BCE AC+BCE

U-Net 0.908± 0.10 0.924± 0.06 0.923± 0.07
Fast-SCNN 0.871± 0.11 0.870± 0.08 0.872± 0.09
Small U-Net 0.903± 0.09 0.911± 0.08 0.921± 0.08

Table 1: Average test Dice coefficient and standard deviation.

(a) Example of hard to predict exam (Dice: 0.5354).

(b) Example of typical exam (Dice: 0.9352).

Fig 2: The region correctly segmented by the U-Net using BCE is in magenta, while blue indicates missing regions

from the predictions and red indicates excessive segmentation.

Volume-predictive Regions
We consider different ways of generating confidence intervals for AF volume estimates.

Standard Volume Prediction: Our first method gives confidence intervals whose lengths
on each test point are of the form 2g(M(Xj)) · radius where Xj is a test point and radius
is a Xj-independent value chosen from validation data.

The case g ≡ 1 is standard for building constant-length predictive intervals. We propose
taking g(M(Xj)) = Vol (M(Xj)). This simple but powerful modification makes the
interval lengths adaptive to the wide range of volumes in the data.

Thresholded Volume Prediction: We consider a Thresholded Volume Prediction algo-
rithm, which uses the model outputM(X) thresholded at different values of t. Intuitively,
the magnitudes of the values of M(X) at each voxel give additional information about
how likely each voxel is to correspond to AF.

Results: Generally, the proposed Standard Volume Prediction algorithm normalized by
g(M(Xj)) = Vol (M(Xj)) yields the best results of the methods considered.
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(a) Average interval sizes for different nominal confidences in test data.
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(b) Empirical vs. nominal coverage in test data.

Fig 3: The Standard Volume Prediction normalized by volume, in orange, and Thresholded Volume Prediction, in

green, have similar average lengths, but the former has more consistent coverage.

Shape-predictive Regions
To obtain shape-predictive regions that can upper and lower bound the segmentation
masks, we consider an algorithm which besides the level 0 < α < 1, also takes another
user-specified leniency parameter λ ≥ 0.

Leniency: For a positive leniency, we construct a confidence setRα(Xj) for an segmented
exam Yi as following: we say that Yj ∈ Rα(Xj) if

max{Vol (Yj\Uα,λ(Xj)) ,Vol (Lα,λ(Xj)\Yj)} ≤ λVol (Yj) .

Here, the lower and upper masks, Lα,λ, Uα,λ, are obtained from M(Xj) by thresholding
at values learned from the validation data.

Intuitively, the idea is to add some slack to the region Rα so the containment over lower
and upper masks, Lα,λ(Xj) ⊂ Yj ⊂ Uα,λ(Xj), does not have to be exact. In practice, there
is often some degree of subjectivity on how specialists segment the borders of AF.

(a) Lower shape-predictive region.

(b) Upper shape-predictive region.

Fig 4: Shape-predictive regions for α = 0.1 and leniency λ = 0.05. Magenta indicates the region correctly

segmented, while blue denotes missing segmentation and red indicates the excess segmentation.
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(a) Average interval sizes for different nominal confidences in test data.
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(b) Empirical vs. nominal coverage in test data.

Fig 5: Larger leniency leads to narrower intervals since there is more flexibility when constructing the shape-predictive

regions. Smaller leniency leads to more consistent empirical confidence.

Results: There is trade-off when choosing the leniency parameter: smaller values lead
to wider intervals but slightly more consistent empirical confidence, as shown in Figure
5b. Overall, not allowing any leniency would lead to disproportionately large intervals, and
seems to be too harsh an inclusion notion for medical segmentation.

Algorithms
The pseudo-code for the algorithms considered are below.

Algorithm 1: Standard Volume Prediction
Input: model M, validation set {(Xi , Yi)}mi=n+1,

test set {(Xi , Yi)}`i=m+1, confidence
1− α ∈ (0, 1) and normalizing function
g : =(M)→ R+.

radii ← [ ];
for i ∈ {n + 1, ..., m} do

append
(
|Vol(M(Xi)≥.5)−Vol(Yi)|

g(M(Xi)≥.5)

)
to radii

end
radius ← (1− α)-quantile of radii
for j ∈ {m + 1, ..., `} do

dv ← g(M(Xj)≥.5) · radius ;
lower volume ← Vol (M(Xj)≥.5)− dv ;
upper volume ← Vol (M(Xj)≥.5) + dv ;
Iα(Xj)← [lower volume, upper volume]

end
Output: Iα(Xj), j = m + 1, . . . , `

Algorithm 2: Thresholded Volume Prediction
Input: model M, validation set {(Xi , Yi)}mi=n+1,

test set {(Xi , Yi)}`i=m+1 and confidence
1− α ∈ (0, 1)

thresholds ← [ ]
for i ∈ {n + 1, ..., m} do

p ← proportion of ones in Yi ;
best threshold ← p-quantile(M(Xi)) ;
append best threshold to thresholds

end
upper boundt ← −(1− α/2)-quantile of list
−thresholds ;

lower boundt ← (1− α/2)-quantile of list
thresholds ;

for j ∈ {m + 1, ..., `} do
lower volume ← Vol (M(Xj)≥lower boundt) ;
upper volume ← Vol

(
M(Xj)≥upper boundt

)
;

Iα(Xj)← [lower volume, upper volume]
end
Output: Iα(Xj), j = m + 1, . . . , `

Algorithm 3: Segmentation Prediction
Input: model M, validation set {(Xi , Yi)}mi=n+1, test set {(Xi , Yi)}`i=m+1, leniency λ ∈ (0, 1) and confidence 1− α ∈ (0, 1)
upper thresholds ← [ ]; lower thresholds ← [ ]
for i ∈ {n + 1, ..., m} do

λupper ← λ
upper threshold ← λupper-quantile(M(Xi)|Yi ,v > 0.5); append min(upper threshold, 0.5) to upper thresholds
λlower = 1− λ · Vol (Yi) /Vol (1− Yi)
lower threshold = λlower-quantile(M(Xi)|Yi ,v < 0.5); append max(lower threshold, 0.5) to lower thresholds

end
upper boundt ← −(1− α/2)-quantile of −upper thresholds; lower boundt ← (1− α/2)-quantile of lower thresholds
for j ∈ {m + 1, ..., `} do
Uα,λ(Xj)←M(Xj)≥upper boundt ; Lα,λ(Xj)←M(Xj)≥lower boundt ; Rα,λ(Xj) = (Lα,λ(Xj),Uα,λ(Xj))

end
Output: Rα,λ(Xj), j = m + 1, . . . , `

Conclusions and Takeaways
Simple modifications to standard conformal predictions yield accurate and useful confidence
sets on both medical image segmentations and volume estimates:

• For volume-predictive regions: Using volume-predictive intervals with adaptive sizes
leads to narrower intervals than the standard normalization, while maintaining proper
coverage (Figure 3).

• For shape-predictive regions: The effective use of a leniency parameter in shape-
predictive regions give good upper and lower confidence sets that come with theoretical
guarantees (Figure 4), and have the potential to visually aid radiologists when performing
MRI segmentation (Figure 5).
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